期刊文献+

分数阶热弹理论下温度依赖材料特性问题研究

Study on Temperature Dependent Material Properties under Fractional Order Thermoelastic Theory
下载PDF
导出
摘要 基于Youssef提出的分数阶广义热弹理论,研究材料特性随温度变化的含有球腔无限大体边界受热冲击的动态响应。借助拉普拉斯变换及其数值反变换技术,得到了模型的无量纲温度,位移以及应力的变化趋势。结果表明:当材料特性参数随温度变化时,热波传播距离在减小,无量纲温度、位移以及应力受到显著影响。 Based on the fractional generalized thermoelastic theory proposed by Youssef,the author will study on the material properties'dynamic response of infinite boundary roughly heat shock including ball cavity along with temperature changes.Then,the author will take the Laplace transformation and numerical inverse transformation technology to solve the problem and get the model's dimensionless temperature,displacement and stress variation trend.As shown in the distribution diagram,the thermal wave propagation distance will be decreased when material property parameters change with temperature,meanwhile,the dimensionless temperature,displacement and stress are significantly affected.
作者 马永斌 李琪 Ma Yongbin;Li Qi(School of Science,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《甘肃科学学报》 2018年第2期1-6,共6页 Journal of Gansu Sciences
基金 国家自然科学基金(11372123) 甘肃省自然科学基金(148RJZA007)
关键词 分数阶热弹 热冲击 材料参数 温度相关性 空心球体 Fractional order thermoelastic Thermal shock:Material parameter Temperature dependency Hollow sphere
  • 相关文献

参考文献3

二级参考文献22

  • 1Lord H W,Shulman Y. A Generalized Dynamical Theory of Thermoelasticity[J]. Journal of Mechanics and Physics of Sol- ids, 1967,15:299-309.
  • 2Green A E, Lindsay K A. Thermoelasticity[J]. Journal of E- lasticity, 1972,2 : 1-7.
  • 3Sherief H H, E1-Sayed A, EI-Latief A. Fractional Order Theo- ry of Thermoelasticity[J]. International Journal of Solids and Structures, 2010,47 : 269-275.
  • 4Sherief H H,Abd El-l.atief A M. Effect of Variable Thermal Conductivity on a Half-space Under the Fractional Order Theory of Thermoelasticity[J]. International Journal of Me- chanical Sciences,2013,74 : 185-189.
  • 5Ezzat M A, E1-Karamany A S, Samaan A A. The Dependence of the Modulus of Elasticity on Reference Temperature in General- ized Thermoelasticity with Thermal Relaxation[J]. Applied Math- ematics and Computation, 2004,147(1) : 169-189.
  • 6Xiong Q L, Tian X G. Transient Magneto-thermoelastie Re- sponse for a Semi-infinite Body with Voids and Variable Ma- terial Properties During Thermal Shock [J ] International Journal of Applied Mechanics,2011,3(4):881-902.
  • 7Rishin V V,Lyashenko B A,Akinin K G,et al. Temperature De- pendence of Adhesion Strength and Elastieity of Some Heat-re- sistant Coatings[J]. Strength of Materials, 1973,5(1) : 123-126.
  • 8LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity [J]. Journal of Mechanics and Physics of Sol- ids, 1967,15 : 299-309.
  • 9GREEN A E, LINDSAY K A. Thermoelasticity [J]. Journal of Elasticity, 1972,2 :1-7.
  • 10POVSTENKO Y Z. Fractional heat conduction equation and associated thermal stress [J]. Journal of Thermal Stresses, 2005,28,83-102.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部