期刊文献+

Process parameters-weld bead geometry interactions and their influence on mechanical properties:A case of dissimilar aluminium alloy electron beam welds 被引量:3

Process parameters-weld bead geometry interactions and their influence on mechanical properties:A case of dissimilar aluminium alloy electron beam welds
下载PDF
导出
摘要 Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties(e.g. tensile load) for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy(AA2219 and AA5083) electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld-a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties(microhardness, ultimate tensile load and face bend angle) are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively.The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties(e.g. tensile load) for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy(AA2219 and AA5083) electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld-a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties(microhardness, ultimate tensile load and face bend angle) are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively.The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy.
出处 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第2期137-150,共14页 Defence Technology
基金 financial support from Defence Research and Development Organisation(DRDO)
关键词 Electron beam welding AA2219 AA5083 BEAD GEOMETRY TENSILE BREAKING load Electron beam welding AA2219 AA5083 Bead geometry Tensile breaking load
  • 相关文献

同被引文献49

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部