期刊文献+

应用黎曼-斯蒂尔杰斯积分证明黎曼第二积分中值定理(英文) 被引量:3

Proving the Second Mean Value Theorem for Riemann Integrals by Riemann-Stieltjes Integrals
下载PDF
导出
摘要 黎曼第二积分中值定理是数学分析中的重要结论,在反常积分和级数理论中都有重要的应用,但它同时又是数学分析的教学难点。华东师范大学《数学分析》教材中黎曼第二积分中值定理的证明略显复杂,极大地掩盖了证明的本质。应用黎曼-斯蒂尔杰斯积分其中的分部积分公式重新证明了黎曼第二积分中值定理,该证明方法简单易懂,还可以应用到其他定理(如反常积分中的狄里克雷判别法等)的证明。 Thcsccond mean value theorem for Riemann integrals is an important resutt in mathematical analysis withmany applications inthetheories ofimproperintegralsandseries.Onthe otherhand,itisalso a difficulty for teaching.In the text book《Mathematical Analysis》published by East China Normal University,the proof of the theorem is quite complicated from which the essential of the proof is covered to a large extcnl.Proving the second mean value theorem for Riemann integrals by integrating by parts formula of Riemann-Stieltjes integralsismuchmoresimpler,and iseasyto be usedtoproveotherresults such as the Dirichlct criteria for improper integrals.
作者 余婷 向长林 Yu Ting;Xiang Changlin(School of Management,Yangtze University,Hubei Jingzhou 434023;School of Information and Mathematics,Yangtze University,Hubei Jingzhou 434023)
出处 《长江大学学报(自然科学版)》 CAS 2018年第9期72-76,共5页 Journal of Yangtze University(Natural Science Edition)
基金 NSFC(11701045) Yangtze Youth Fund(2016cqn56)
关键词 黎曼第二积分中值定理 黎曼斯蒂尔杰斯积分 分部积分 the second mean value theorem of Riemann integrals Riemann-Stieltjes integrals integrating byparts
  • 相关文献

参考文献1

二级参考文献3

共引文献3

同被引文献5

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部