期刊文献+

一种基于平行坐标系的流转数据可视化方法 被引量:7

A VISUALIZATION METHOD FOR FLOW DATA BASED ON PARALLEL COORDINATES
下载PDF
导出
摘要 流转数据是一种重要的数据类别,其中蕴含了较为丰富的规律性知识。如何通过数据可视化技术挖掘分析其中的知识具有重要意义。为此,提出一种基于平行坐标系的流转数据可视化方法,定义了流转数据可视化模型,将可视化过程抽象为流转数据集、矩阵模型、平行坐标系可视结构三个主要模型。流转数据集是可视化的数据对象,矩阵模型是可视化的内部表示,平行坐标系结构是可视化的图形元素,并通过转换算法实现三个模型的相互映射。此外,为解决海量流转数据可视化性能瓶颈与折线重叠问题,实现了基于Spark框架的并行处理算法。该算法采用K-Means聚类思想对流转数据聚类,增强了平行坐标系的视觉效果。实验证明,所提出的可视化方法能够真实有效地可视化流转数据,同时也适用于对海量流转数据集的可视化。 Flow data is an important data category,which contains abundant regular knowledge.A key problem is how to use data visualization technology to analyze the flow data.In this paper,a visualization method for flow data based on parallel coordinates is proposed.A general visualization model for flow data was defined.The visualization process was abstracted into three main models:flow data set,matrix model and visual system of parallel coordinate system.The flow data set was a visual data object,the matrix model was a visual internal representation,and the parallel coordinate system was a visual graphical element.The three models were mapped each other by transformation algorithms.In addition,in order to handle massive flow data,a parallel processing algorithm using Spark framework was implemented.This algorithm adopted the K-means clustering principle to enhance the visual effect of the parallel coordinates.The experiments showed that the proposed method could effectively visualize the flow data and was also applicable to massive flow data set.
作者 张元鸣 高亚琳 蒋建波 陆佳炜 徐俊 肖刚 Zhang Yuanming;Gao Yalin;Jiang Jianbo;Lu Jiawei;Xu Jun ;Xiao Gang(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,Zhejiang,China)
出处 《计算机应用与软件》 北大核心 2018年第4期55-60,116,共7页 Computer Applications and Software
基金 浙江省公益性技术项目(2017C31014) 浙江省重大科技专项项目(2014C01048)
关键词 平行坐标系 流转数据 可视化模型 SPARK Parallel coordinates Flow data Visualization model Spark
  • 相关文献

参考文献14

二级参考文献196

  • 1翟旭君,李春平.平行坐标及其在聚类分析中的应用[J].计算机应用研究,2005,22(8):124-126. 被引量:12
  • 2宋强,徐鹏,李涓子.半结构化文档中非标记化表格的抽取[J].计算机工程,2005,31(18):81-83. 被引量:3
  • 3张聪,张慧.信息可视化研究[J].武汉工业学院学报,2006,25(3):45-48. 被引量:10
  • 4蒋志方,孟祥旭,樊方芳,王锐.基于圆环段技术的空气污染物浓度数据可视化[J].系统仿真学报,2006,18(10):2859-2861. 被引量:2
  • 5Kattan M W,Eastham J A,Stapleton A M,et al.A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer[J].J Natl Cancer Inst,1998,90(10):766-771.
  • 6Mozina M,Demsar J,Kattan M W,et al.Nomograms for visualization of naive bayesian classifier[C]//Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases(PKDD),Pisa haly,2004: 337-348.
  • 7Chou Shuo-Yan,Lin Shih-Wei,Yeh Chia-Shin.Cluster identification with parallel coordinates[J].Pattem Recognition Letters,1999, 20 ( 6 ) : 565-572.
  • 8Albazzaz H,Wang Xue Z.Historical data analysis based on plots of independent and parallel coordinates and statistical control limits[J].Joumal of Process Control,2006,16(2) : 103-114.
  • 9Tao Ying,Liu Yang,Friedman C,et al.Information visualization technology in bioinformatics during the postgenomic era[J].DDT: BIOSILICO, 2004,2( 6 ) : 237-245.
  • 10Xu Yonghong,Hong Wenxue,Chen Na,et al.Parallel Filter:a visual classifier based on parallel coordinates and multivariate data analysis[J].Lecture Note in Artificial Intelligence,2007,4682: 1172-1183.

共引文献105

同被引文献92

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部