期刊文献+

基于神经网络的风洞尾支杆减振系统 被引量:3

Damping System for Sting Used in Wind Tunnel Based on Neural Network
下载PDF
导出
摘要 风洞试验时,由于气流的影响,测试用悬臂式尾支杆容易产生大幅度低频振动,这会严重影响测试精度,甚至损坏自身结构。为了有效抑制尾支杆的振动,本文设计了基于压电组件的主动减振系统,并将人工神经网络应用于PID控制,提出了神经网络PID智能控制算法。对尾支杆进行有限元分析,获取其模态参数。然后设计试验测试减振系统的性能,将神经网络PID与经典PID的控制效果进行对比。试验结果表明:在连续载荷的作用下,采用经典PID控制算法与神经网络PID均可达到有效控制(减振幅度70%以上),且神经网络PID在保证减振效果的情况下实现控制参数自整定,具有良好的鲁棒性。 In the wind tunnel tests,due to the influence of airflow,large-amplitude and low-frequency vibration is easily produced on the cantilever sting used for testing,which would seriously affect the accuracy of tests and even destroy the structure.In order to effectively reduce the vibration of the sting,this paper designs an active damping system based on piezoelectric components and applies the artificial neural network to PID control,then proposes a neural network PID(NNPID)intelligent control algorithm.The sting is analyzed by the finiteele-ment method,and its modal parameters are obtained.Meanwhile,experiments are carried out to test the per-formance of the damping system and the effects of NNPID and general PID algorithm are compared.Results in-dicate thatunder continuous loads,the general PID control and NNPID both have good performance(over 70%amplitude of vibration reduced)in controlling the first modal vibration of the structure.Furthermore,NNPID achieves the goal of the self-adjusting of parameters under the condition of ensuring the damping effect,and pos-sesses good robustness.
作者 张文博 陈明绚 沈星 ZHANG Wenbo;CHEN Mingxuan;SHEN Xing(The First Aircratt Institute,Aviation Industry Corporation of China,Xi'an,710089,China;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronatics&Astronatics,Nanjing,210016,China)
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第2期276-281,共6页 Journal of Nanjing University of Aeronautics & Astronautics
基金 陆航"十三五"预研基金资助项目
关键词 压电智能结构 振动主动控制 神经网络PID piezoelectric smart structures active vibration control neural network PID
  • 相关文献

参考文献3

二级参考文献15

  • 1杨恩霞.大攻角张线-尾撑组合支撑设备的设计[J].机械工程师,2005(7):113-114. 被引量:6
  • 2瞿伟廉,查小鹏.基于最小控制综合算法的结构振动控制研究[J].武汉理工大学学报,2007,29(1):145-148. 被引量:11
  • 3di Bernardo M,Santini S.Enhancing the structuralstability of LQ optimal controllers via the MCS adaptivealgorithm[C]∥Proc IFAC World Congress.Prague:Elsevier Science&Technology,2005:16.
  • 4Stoten D P,Benchoubane H.Robustness of a mini-mal controller synthesis algorithm[J].Int J Control,1990,51(4):851-861.
  • 5Stoten D P,Benchoubane H.The extended minimalcontroller synthesis algorithm[J].Int J Control,1992,56(5):1139-1165.
  • 6Bernardo M D,Montanaro U,Santini S.On a novelhybrid LQ-MCS control scheme[C]∥Proceedings ofthe 46th IEEE Conference on Decision and Control.New Orleans:IEEE,2007:3291-3296.
  • 7Bernardo M D,Stoten D P.A new extended minimalcontrol synthesis algorithm with an application to thecontrol of chaotic systems[C]∥Proceedings of the36th Conference on Decision&Control.San Diego:IEEE,1997:1902-1907.
  • 8Bernardo M D,Stoten D P.Minimal control synthe-sis adaptive control of chaos nonlinear systems:utili-zing the properties of chaos[J].Phil Trans R Soc A,2006,64:2397-2415.
  • 9Ma Tianbing,Du Fei.Multimode vibration supres-sion of piezoelectric plate based on minimal controlsynthesis algorithm[C]∥CECNet2011.Xianning:IEEE,2011:2351-2354.
  • 10陈复阳,姜斌.自适应控制与应用[M].北京:国防工业出版社,2009.

共引文献24

同被引文献41

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部