期刊文献+

基于云模型的城市轨道交通短时客流预测 被引量:4

Forecast of Short-term Passenger Flow in Urban Rail Transit Based on Cloud Model
下载PDF
导出
摘要 城市轨道交通线路短时客流具有不确定性特征。分析了短时客流的准周期性,用云概念表示短时客流的特征,构建历史时间云、历史客流云、当前客流趋势云以及客流预测云,并建立时间云与客流云的关联规则,将时间云作为规则前件,客流预测云作为规则后件构建单条件多规则不确定性预测云模型。以南京地铁2号线15 min间隔的进站客流预测为例,将云模型与ARIMA模型的预测结果进行对比分析,证明云模型应用于短时客流预测的有效性,从而为城市轨道交通线路短时客流预测提供了一种新途径。 The short-term passenger flow of urban rail transit has uncertain characteristics.Based on an analysis of quasi-periodical of short-term passenger flow,the basic theory and methods of cloud model are used to represent the short-term passenger flow characters,and build the passenger flow cloud,time cloud,historical time cloud,historical passenger flow cloud,current passenger flow trend cloud and the passenger flow forecasting model.An uncertainty forecast model with single conditional and multiple rules is formed by setting the time cloud as the former and the passenger flow forecast cloud as the latter in forecast rules.At the same time,the model is used to forecast the entrance passenger flow of 15 min time interval in Nanjing Metro Line 2,and compared with ARIMA model,to prove that cloud model is effective and can provide a new way for the short-term passenger flow forecast in urban rail transit.
作者 付保明 王健 张宁 徐文 FU Baoming;WANG Jian;ZHANG Ning;XU Wen(ITS Rail Transit Research Institute of Southeast University,210096,Nanjing,China)
出处 《城市轨道交通研究》 北大核心 2018年第4期61-65,共5页 Urban Mass Transit
基金 江苏省重点研发计划(社会发展)项目(BE2016740)
关键词 城市轨道交通 短时客流预测 不确定性 云模型 urban rail transit short-term passenger flow forecast uncertainty cloud model
  • 相关文献

参考文献10

二级参考文献102

共引文献222

同被引文献29

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部