期刊文献+

非磁性微粒的负磁泳-惯性组合分选研究 被引量:1

Investigation on a Negative Magnetophoretic-inertial Combined Sortor for Non-magnetic Microparticles
下载PDF
导出
摘要 为了分选颗粒直径十分接近的非磁性颗粒,数值计算了负磁泳耦合的惯性分选器在不同磁场强度、微通道结构参数、入口速度和速度比情况下3μm、4μm、5μm的三种颗粒的侧向偏移,结果表明:颗粒的侧向迁移随磁场强度和颗粒尺寸的增大而增大;颗粒的分离效率随着入口流速的减小和入口流速比的增大而提高;越小的微通道结构参数Ha/Hb和越大的扩张区扩张比,都有利于颗粒分离。计算结果部分得到了激光诱导荧光图像实验的验证,证明了数值模型的有效性。 In order to sort non-magnetic micro-particles with a very close diameter,lateral migration of negative magnetophoretic coupled inertial sorter might be numerically calculated for 3 kinds of non-magnetic particles of 3μm,4μm,5μm in different magnetic fields for different microchannel parameters,different inlet velocities and velocity ratios of two inlets.The numerical results show that,greater lateral migration of non-magnetic particles are induced by more powerful magnetic field and bigger particle diameters.Separation efficiency of non-magnetic particles promotes when lower inlet velocity and greater inlet-velocity ratio.Moreover,smaller H a/H b and larger extension proportion in sorter are beneficial to particle separation.Partial numerical results verified by laser induced fluorescence experiments may prove the validity of numerical model.
作者 杜加友 郭望城 王瑞金 朱泽飞 DU Jiayou;GUO Wangcheng;WANG Ruijin;ZHU Zefei(Faculty of Mechanical Engineering and Automation,Zhejiang Sci-Tech University, Hangzhou,310018;School of Mechanical Engineering,Hangzhou Dianzi University,Hangzhou,310018)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2018年第8期906-915,922,共11页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11572107 51376055)
关键词 负磁泳 非磁性颗粒 惯性分选 磁场强度 数值模拟 negative magnetophoresis non-magnetic particle inertial sorting magnetic field intensity numerical simulation
  • 相关文献

参考文献6

二级参考文献93

  • 1李淑娴,吴一辉,宣明.电磁式微流体动态混合器的动力学数值模拟[J].光学精密工程,2005,13(2):127-134. 被引量:10
  • 2车录锋,卢云,徐志农.铰链式高冲击微加速度传感器封装的有限元模拟[J].光学精密工程,2007,15(2):199-205. 被引量:13
  • 3[1]Barnes,H.A.(1989).Shear-thickening ("Dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids.Journal of Rheology,33,329-366.
  • 4[2]Brinkman,H.C.(1952).The viscosity of concentrated suspensions and solutions.Journal of Chemical Physics,20,571-579.
  • 5[3]Catherall,A.A.,Melrose,J.R.,& Ball,R.C.(2000).Shear thickening and order-disorder effects in concentrated colloids at high shear rates.Journal of Rheology,44,1-25.
  • 6[4]Chi,C.Q.,Wang,Z.S.,& Zhao,P.S.(1993).Ferrofluids dynamics.Beijing:Beijing University of Aeronautics & Astronautics Press.(in Chinese).
  • 7[5]Choi,S.U.S.(1995).Enhancing thermal conductivity of fluids with nanoparticle.ASME Fluids Engineering Division,231,99-105.
  • 8[6]Franks,G.V.,Zhou,Z.W.,& Duin,N.J.(2000).Effect of interparticle forces on shear thickening of oxide suspensions.Journal of Rheology,44,759-779.
  • 9[7]Frith,W.J.,Haene,E,Buscall,R.,& Mewis,J.(1996).Shear thickening in model suspensions of sterically stabilized particles.Journal of Rheology,40,531-548.
  • 10[8]Goddard,J.D.,& Miller,C.(1967).Nonlinear effects in the rheology of dilute suspensions.Journal of Fluid Mechanics,28,657-673.

共引文献36

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部