期刊文献+

虚拟化环境下GPU调度算法的研究 被引量:1

Research on GPU Scheduling Algorithm in Virtual Environment
下载PDF
导出
摘要 在光线跟踪算法中,传统上通过像素递归深度对场景进行划分,然后必须每一个任务分配一个GPU服务器节点服务器,但是这种静态任务分配的算法在虚拟化环境中没办法实现对GPU资源的有效利用,而且一旦有服务器节点宕机就会导致场景绘制失败。对此,提出一种基于hash思想的解决方案,有效的解决该问题。 The scenes are divided by pixel recursion depth in ray tracing algorithms traditionally,in this way,one GPU node server must be assigned to each task.But this static GPU allocation algorithm can not effectively utilize GPU resources in virtualized environment,at the same time,once a node is down,it will result in scenario rendering failure.So this paper presents a solution base on hash algorithm solving the problem effectively.
作者 刘鹤年 LIU He-nian(School of Computer Science and Technology,Changchun University of Science and Technology,Changchun Jilin 130022)
出处 《数字技术与应用》 2018年第2期127-128,共2页 Digital Technology & Application
关键词 实时场景绘制 HASH算法 集群 Real-time scene rendering hash algorithm Cluster
  • 相关文献

参考文献2

二级参考文献14

  • 1Kun Zhou, Qi Ming Hou, Rui Wang, et al.Real-timek-D tree construction on graphics hardware. In Proc[C]. SIGGRAPH Asia (2008),27(3):1-11.
  • 2Kirill Garanzha, Jacopo Pantaleoni, David McAllister.Simpler and faster HLBVH with work queues [C].In Proceedings of the ACM SIGGRAPH Sympo-sium on High Performance Graphics, NewYork,(USA), 2011.
  • 3Cosenza B, Cordasco G,De Chiara R,et al.Loadbalancing in mesh-like computations using predic-tion binary trees [C] : 2008 International Symposiumon Parallel and Distributed Computing, Salemo (Ita-ly),2011.IEEE.
  • 4Biagio Cosenza, Gennaro Cordasco, Rosario De Chi-ara,et al. On estimating the effectiveness of tempo-ral and spatial coherence in parallel ray tracing[C].In Eurographics Italian Chapter Conference,Salemo(Italy), 2008.
  • 5Alan Chalmers, Erik Reinhard. Pratical parallel ren-dering[M]. A. K.Peters,Ltd.,2002 :20-35.
  • 6Biagio Cosenza, Carsten Dachsbacher, Ugo Erra.GPU cost estimation for load balancing in parallelray tracing [C]. 8th International Conference onComputer Graphics Theory and Applications, Barce-Iona(Spain)2013.
  • 7傅德胜,周辰.基于密度的改进K均值算法及实现[J].计算机应用,2011,31(2):432-434. 被引量:76
  • 8仝雪姣,孟凡荣,王志晓.对k-means初始聚类中心的优化[J].计算机工程与设计,2011,32(8):2721-2723. 被引量:29
  • 9张俊溪,吴晓军.一种新的基于进化计算的聚类算法[J].计算机工程与应用,2011,47(24):111-114. 被引量:6
  • 10于海涛,李梓,姚念民.K-means聚类算法优化方法的研究[J].小型微型计算机系统,2012,33(10):2273-2277. 被引量:22

共引文献1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部