期刊文献+

基于位置的广告调度建模与求解

A New Model of Location Based Advertisement Schedule
下载PDF
导出
摘要 针对车联网或未来无人驾驶场景下的多媒体广告推送问题,需要在现有的移动广告推荐系统中,加入对时间窗口、匹配路线、受众心理等参数的考虑和优化。提出了一个广告轮播模型,将一系列的广告推荐整体考虑。根据车联网环境下基于位置的广告的特点,抽象出合适的数学模型,将基于位置的广告的调度问题转化为最优化问题,并通过最优规划方法建立了广告轮播策略。实验表明该模型和策略可以使得广告与用户的时空参数最优匹配,保障广告的个性化及多样性,兼顾了广告投放者的短期利益与广告平台的长期生态效益,以及受众的心理接受度。 In order to solve the problem of multimedia advertising in the car networking or future unmanned driving scenarios,it is necessary to consider and optimize parameters such as time window,matching route,and audience psychology in the existing mobile advertisement recommendation system.An advertising rotation model was proposed to consider a whole series of advertisement recommendations as a whole.According to the characteristics of location-based advertising in the Internet of Vehicles environment,an appropriate mathematical model was abstracted,the scheduling problem of location-based advertising was transformed into the optimization problem,and the advertising carousel strategy was established through the optimal planning method.Experiments show that the model and strategy can make the optimal match between advertising and user's space-time parameters,protect the individuality and diversity of advertising,consider the short-term benefits of advertising distributors and the long-term ecological benefits of advertising platforms,and also the audience's psychological acceptance.
作者 刘春 王中齐 LIU Chun;WANG Zhongqi(School of Computer Science,Hubei Univ.of Tech.,Wuhan 433068,China)
出处 《湖北工业大学学报》 2018年第2期67-71,共5页 Journal of Hubei University of Technology
关键词 广告调度 车载广告 多目标优化 整数规划 advertisement scheduling mobile advertisement multi-objective optimization integer optimization
  • 相关文献

参考文献3

二级参考文献36

  • 1陈明,孙丽丽.移动电话内容服务系统的个性化推荐[J].计算机工程与应用,2007,43(4):4-6. 被引量:4
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 4Adomavicius G and Tuzhilin A. Towards the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 5Adomavicius G, Sankaranarayanan R, Sen S, et al.. Incorporating contextual information in recommender systems using a multidimensional approach[J]. A CM Transactions on Information Systems, 2005, 23(1): 103-145.
  • 6Adomavicius G and Tuzhilin A. Context-aware Recommender Systems (Book Chapter)[M]. Recommender Systems Hand-book, New York, Dordrecht, Heidelberg, London, Springer Press, 2011: 217-253.
  • 7Zhang Yu-jie and Wang Li-cai. Some challenges for contextaware recommender systems[C]. In the 1st Workshop on Recommender System at The 5th IEEE International Conference on Computer Science & Education, Hefei, China, 2010: 362-365.
  • 8Wang Li-cai. Understanding and using contextual information in recommender systems[C]. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information, Beijing, China, 2011: 1329-1330.
  • 9Ricci F. Mobile recommender systems[J]. Journal of Information Technology and Tourism, 2011, 12(3): 205-231.
  • 10Chen Annie. Context-aware collaborative filtering system: predicting the user's preference in the ubiquitous computing environment[C]. The 1st International Workshop on Location-and Context-Awareness, Berlin, Heidelberg, Springer 2005, LNCS 3479: 244-253.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部