期刊文献+

振动信号包络线的稀疏重构最优化算法研究与应用 被引量:2

Sparse recovery optimizing Algorithm for vibration signal envelopes
下载PDF
导出
摘要 经验模态分解是处理非线性、非平稳信号的有效方法,其核心关键是包络线的提取。针对目前提出的包络拟合算法所存在的端点效应、拟合误差大、抗噪性低等问题,在文献[9]的基础上,提出一种基于稀疏复原最优化算法提取信号包络线的方法。首先利用外罚函数将包络线稀疏优化模型的凹问题转换为凸二次规划问题;其次采用混合变异粒子群算法对改变稀疏基频带宽度的变化因子m进行全局寻优,利用最优变化因子构建适合包络线变化趋势的最佳稀疏基,然后将采集信号的所有极值点作为稀疏重构过程中的观测值,利用最佳稀疏基与观测值建立稀疏重构模型,使用内点法对该模型进行处理,最终自适应地得到了全局最优的包络线信号。结果表明,该方法可以有效抑制端点飞翼问题,粒子群算法的引入可以自适应地匹配最优的稀疏基映射带宽,在拟合精度和抗噪声等性能方面获得了比文献[9]更好的效果,有效提高了包络线拟合精度和抗噪性。 Empirical mode decomposition(EMD)is one of effective methods to process nonlinear and non-stationary signals,its key is to extract signals’envelope curve.A method based on the sparse recovery optimizing algorithm was proposed to overcome defects of the envelope fitting algorithm,such as,end effect,bigger fitting error and low anti-noise ability,etc.Firstly,the concave problem of envelope sparse optimal model was converted into a convex quadratic programming problem by using exterior penalty functions.Secondly,the mixed variant particle swarm optimization(PSO)algorithm was used to solve the global optimization of the variant factor m which changes the sparse base’s frequency band width.This m was employed to build the optimal sparse bases being suitable for envelope variation trend.All extreme value points of the collected signal were taken as observed values in the process of sparse recovery.The optimal sparse bases and observed values were used to establish the sparse recovery model.The interior-point method was adopted to process the built model.Finally,the globally optimal envelope signal was gained adaptively.The results showed that this method can effectively suppress the end effect;PSO introduced here can adaptively match the mapping band width of the optimal spare bases,it improves the signal envelope fitting precision and noise immunity.
作者 于岩君 叶庆卫 陆志华 周宇 YU Yanjun;YE Qingwei;LU Zhihua;ZHOU Yu(Information Science and Engineering College,Ningbo University,Ningbo 315211,China)
出处 《振动与冲击》 EI CSCD 北大核心 2018年第7期179-185,210,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51675286 61071198) 浙江省创新团队(2013TD21)
关键词 经验模态分解 稀疏复原优化 粒子群算法 内点法 empirical mode decomposition(EMD) sparse recovery optimization particle swarm optimization(PSO) interior-point method
  • 相关文献

参考文献4

二级参考文献37

  • 1王志杰,丁康.汽车变速器故障振动特征提取的试验研究[J].汽车工程,1994,16(4):242-249. 被引量:18
  • 2丁康,王延春.传动箱齿轮和轴故障的振动诊断方法的研究[J].振动与冲击,1994,13(2):26-32. 被引量:34
  • 3赵跃宇,吕建根.索—拱组合结构中斜拉索的非线性参数振动[J].土木工程学报,2006,39(12):67-72. 被引量:17
  • 4丁康,米林,王志杰.解调分析在故障诊断中应用的局限性问题[J].振动工程学报,1997,10(1):13-20. 被引量:42
  • 5Huang N E, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond, Series A, 1998, 454:899.
  • 6Huang N E, et al. A new view of nonlinear water waves: The Hilbert spectrum. Ann Rev Fluid Mech, 1999, 31 : 417.
  • 7Huang N E, et al. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan,21, September 1999. Bull Soc Seism Am, 2001, 91:1310.
  • 8Hilbert-Huang. Transform Toolbox, Professional Edition V1.0,Princeton Satellite Systems. Princeton: New Jersey, 2000.
  • 9van den Bergh F,Engelbrecht A P.Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conference,San Francisco,USA,2001.
  • 10van den Bergh F,Engelbrecht A P.Effects of swarm size cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conference,San Francisco,USA,2001.

共引文献115

同被引文献29

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部