期刊文献+

基于局部空间变稀疏约束的多核学习方法 被引量:4

Local Variable Sparsity Based Multiple Kernel Learning Algorithm
下载PDF
导出
摘要 局部多核学习方法根据样本所在局部空间特性选择特定的核函数组合方式,具有较好的判别能力.本文提出了一种基于局部空间变稀疏约束的多核学习方法,首先依据样本在特征空间的分布情况以软分组的方式将训练数据划分为若干数据子集.以数据子集为单位,根据在相应的局部空间内的核函数相似程度,调整核组合的稀疏程度,使用交替优化的方法进行求解.实验表明本文方法对于区分特征学习和对抗噪声方面具有的优势,因此也使得在图像场景分类问题上的准确率和稳定性得到明显提高. Local multiple kernel learning method could learn a specific combination kernel function for various samples accordingto the local space characteristics,therefore it has better discriminant ability.In this paper,we propose a local variable sparsity based multiple kernel learning method.In our method,the samples are divided into a few groups with a soft grouping method and the sparsity of kernel weights in various local spaces isdetermined by the similarity of kernels.We use an alternative optimization method to solve this problem.The experiment on synthetic dataset indicates that ourmethod has a strong advantage in discriminative feature learning and against noise.Finally we apply our method into image scene classification and the accuracy is improved obviously.
作者 王庆超 付光远 汪洪桥 辜弘扬 王超 FU Guang-yuan;WANG Qing-chao;WANG Hong-qiao;GU Hong-yang;WANG Chao(The Rocket Force University of Engineering,Xi’an,Shaanxi 710025,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第4期930-937,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61202332 No.61403397) 陕西省自然科学基金(No.2015JM6313)
关键词 多核学习 支持向量机 局部学习 变稀疏约束 multiple kernel learning support vector machine local learning variable sparsity
  • 相关文献

参考文献6

二级参考文献64

  • 1Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3D Nister, et al. Sealable recognition with a vocabulary tree [ A]. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition [ C ]. USA: IEEE Press, 2006. 2161 - 2168.
  • 4S Lazebnik, C Schmid, J Ponce. Beyond bag of features: spatial pyramid matching for recognizing natural scene categories [ A]. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition [ C]. USA: IEEE Press,2006.2169 - 2178.
  • 5M Varma, D Ray. I.gaming the discriminative power- invari- ance trade-off[ A ]. Proceeding of International Conference on Computer Vision [ C]. USA: IEEE Press,2007.1 - 8. object categories [ OL ]. http://www, vision, caltech, edu/feifeili/ Data sets. han,2003.9.
  • 6H Lee,A Battle,R Raina,A Y Ng. Efficient sparse coding al- gorithms [ A ]. Proceeding of Advances in Neural Information Processing System[C]. Canada:NIPS Press,2007. 801 - 808.
  • 7J Yang, K Yu, Y Gong, T Huang. Linear spatial pyramid matching using sparse coding for image classification [ A ]. Proceeding of IEEE Conference on Computer Vision and Pat- tern Recognition [ C]. USA: IEEE Press,2009. 1794 - 1801.
  • 8F-F Li,A Oliva. Fifteen scene categories [OL]. http://www- ew. ai. uiuc. edu/ponce_ grp/data/,2006.10.
  • 9J F Bonnans, A Shapiro. Perturbation Analysis of Optimization Problems [M] .Springer,2000.
  • 10O ChapeUe, V Vapnik, O Bousquet, S Mukherjee. Choosing multiple parameters for support vector machines [ J ]. Machine Learning,2002,46(1-3) : 131 - 159.

共引文献205

同被引文献25

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部