期刊文献+

热变形温度对Nd_(14)Fe_(80)B_6磁体矫顽力的影响研究

Effects of deformation temperatures on coercivity of Nd_(14)Fe_(80)B_6 die-upset magnets
下载PDF
导出
摘要 使用X射线衍射、扫描电镜和磁滞回线仪等研究热变形温度、平均片状晶长度、单畴晶粒占比、平均片状晶厚度对热变形Nd_(14)Fe_(80)B_6磁体矫顽力的影响。结果表明,当Nd_(14)Fe_(80)B_6热变形温度超过其富稀土晶界相熔点150~170K后,磁体矫顽力从737kA/m降低到355kA/m。热变形Nd_(14)Fe_(80)B_6磁体统计平均片状晶长度L为320~500nm,单畴晶粒占比0.52~0.26,多畴晶粒的增加是热变形磁体矫顽力下降的原因。随着热变形温度的增加、变形时间的延长,平均片状晶厚度增长速度快于平均片状晶长度,对应热变形磁体矫顽力的下降。若降低变形温度在富稀土晶界相熔点附近有望提高磁体的矫顽力。 Effects of deformation temperatures,average platelet-grain length,single domain grain ratio and average thickness of platelet grain on coercivity of Nd14Fe80B6 die-upset magnets were investigated with X-ray diffraction,scanning electron microscopy and hysteresis loop instrument.The results show that when Nd14Fe80B6 die-upset temperature is 150-170 K above the melting point of its rich-rare-earth boundary phase,the coercivity of magnets decreases from 737 to 355 kA/m.The average platelet-grain length ranges from 320 to 500 nm and single domain grain ratio changes from 0.52 to 0.26.The increase of multi domain grains is the main cause of the coercivity decreasing.As the deformation temperature increasing or deformation time prolonging,the thickening velocity is higher than the length increasing speed of the platelet grains,resulting in the decrease of coercivity.If the deformation temperature is reduced near to the melting point,the coercivity of the die-upset magnets would be improved.
作者 蒋美琴 陈兵 潘晶 刘新才 JIANG Meiqin;CHEN Bing;PAN Jing;LIU Xincai(Faculty of Materials Science and Chemical Engineering,Ningbo University,Ningbo 315211,China)
出处 《功能材料》 EI CAS CSCD 北大核心 2018年第4期4139-4143,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51274125 51174121) 浙江省重点科技创新团队资助项目(2012R10016-08)
关键词 热变形 矫顽力 平均片状晶长度 单畴晶粒占比 平均片状晶长厚比 die-upset coercivity average platelet-grain length single domain grain ratio ratio of average length to thickness of platelet grain
  • 相关文献

参考文献4

二级参考文献18

  • 1喻晓军,张继凯.HD和HDDR方法对稀土铁基化合物磁特性的影响[J].金属功能材料,1997,4(1):18-21. 被引量:5
  • 2Hinz D, Kirchner A, Brown D N, Ma B M and Gutfieisch O 2003 J. Mater. Process. Technol. 135 358.
  • 3Li X M, Fang Y K, Guo Z H, Liu T, Guo Y Q, Li W and Han B S 2008 Chin. Phys. B 17 1674.
  • 4Huang W G, Zhang X Q, Li G K, Sun Y, Li Q A and Cheng Z H 2009 Chin. Phys. B 18 5034.
  • 5Zhao J J, Xing R, Lu Y, Haosibayar Y, Zhao M, Jin X, Zheng L, Ning W, Sun Y and Cheng Z H 2008 Chin. Phys. B 17 2717.
  • 6Yoshikawa N, Iriyama T, Yamada H, Kasai Y and Pan- chanathan V 1999 IEEE Trans. Magn. 35 3268.
  • 7Grunberger W, Hinz D, Kirchner A, Muller K H and Schultz L 1997 J. Alloys Compd. 257 293.
  • 8Li A H, Li W, Lai B, Wang H J, Zhu M G and Pan W 2010 J. Appl. Phys. 107 09A725.
  • 9Lee R W, Brewer E G and Schaffel N A 1985 IEEE Trans. Magn. 21 1958.
  • 10Mishra R K, Chu T Y and Rabenberg L K 1990 J. Magn. Magn. Mater. 84 88.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部