期刊文献+

面向软件模糊自适应的语音式任务目标识别与结构化转换 被引量:9

Recognization and Structured Conversion of Phonetic Form Task Object for Software Fuzzy Self-adaptation
下载PDF
导出
摘要 已有语音识别方法将用户用英文语音表达的任务目标直接施加到模糊自适应环中,采取直接将识别结果匹配规则前件的方法,限制了系统的识别能力。为此,提出一种语音式任务目标的结构化转换方法。对于语音式任务目标进行句法分析和关键成分提取,对关键成分进行语义关联拓展,建立与任务目标等价的语义关联集合,基于集合完成面向模糊规则前件的结构化转换。通过搭建任务机器人实验系统,验证了该方法具有较好的语音式任务目标识别能力。 The existing voice-identification methods directly apply English voice-based task goals into the fuzzy self-adaptation loop.However,the ability of recognitionis limited,as the methods directly matched the raw recognized phrases with rules.In order to solve this problem,a structural transformation approach is proposed.Firstly,voice-based task goals are analyzed through the syntax and their key components are extracted.Then,semantic-equivalence sets are established by expanding semantic-relevance words.Based on these keyword sets of task goals,structural transformation orienting to fuzzy rules'pre-component is finally completed.By constructing task-oriented robot system,it is verified the approach has better recognition ability of voice-based task goals.
作者 张晓冰 杨启亮 邢建春 韩德帅 ZHANG Xiaobing;YANG Qiliang;XING Jianchun;HAN Deshuai(College of Defense Engineering,PLA University of Science and Technology,Nanjing 210007,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第4期59-65,共7页 Computer Engineering
基金 江苏省自然科学基金面上项目(BK20151451)
关键词 自适应软件系统 软件模糊自适应 目标识别 结构化转换 自然语言处理 self-adaptive software system Software Fuzzy Self-adaptation(SFSA) object recognition structured conversion Natural Language Processing(NLP)
  • 相关文献

参考文献4

二级参考文献50

  • 1何娟,高志强,陆青健,瞿裕忠.基于词汇相似度的元素级本体匹配[J].计算机工程,2006,32(16):185-187. 被引量:25
  • 2杨启亮,邢建春,王平.面向LonWorks网络的OPC Server设计与实现[J].计算机工程,2007,33(3):228-230. 被引量:2
  • 32006-2020年国家信息化发展战略[Z] ,2006-05-08.
  • 4宗成庆.统计机器翻译[M].2版.北京:清华大学出版社,2013.
  • 5维克托·迈尔-舍恩伯格,肯尼迪·库克耶.大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2013.
  • 6Lazer D, Pentland A, Adamic L, et al.. Computational Social Science [J]. Science, 2009,323 (5915): 721-723.
  • 7Zhang Hui, Zhang Min, Li Haizhou, et al.. Fast translation rule matching for syntax-based statistical machine translation [C] // Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2, Singapore, 2009: 1037-1045.
  • 8Hirschman L,Gaizauskas R.Natural language question answering: the view from here [J]. Natural Language Engineering, 2001,7 (4): 275-300.
  • 9Androutsopoulos I,Malakasiotis P.A Survey of Paraphrasing and Textual Entailment Methods[J].Journal of Artificial Intelligence Research,2010,38(1):135-187.
  • 10Shnarch E,Dagan I.Lexical Entailment and Its Extraction from Wikipedia[D].Israel,Jaffa:Bar-Ilan University,2008.

共引文献62

同被引文献97

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部