期刊文献+

基于深度稀疏辨别的跨领域图像分类 被引量:5

Cross Domain Image Classification Based on Deep Sparse Discrimination
下载PDF
导出
摘要 在图像分类任务中,由于图像背景、光照、拍摄角度等的变化,从源领域上训练的分类模型常常不适用于相关目标领域的图像数据。为此,提出一种基于深度卷积神经网络的迁移学习方法——稀疏辨别迁移模型。该方法通过自适应地学习目标领域辨别性特征分布优化分类函数,同时与特征预处理方法相结合,可获得较好的互补性作用。实验结果表明,与现有的基准与深度迁移方法相比,该方法在Office-Caltech和Office-31 2个标准跨领域分类数据集上均取得了较好的分类性能。 In image classification tasks,classification models trained from the source domain often do not work well with the image data of the relevant target areas due to changes in image background,lighting,shooting angles,and the like.Therefore,this paper proposes a migration learning method based on deep convolution neural network--Sparse Discriminating Transfer Model(SDTM).The method optimizes the classification function by adaptively learning the diserimination feature distribution of the target area.At the same time combing with the characteristics of preprocessed methods combined to obtain a better complementarity.Experimental results show that SDTM achieves better classification performance on the two standard cross-domain classification datasets of Office-Caltech and Office-31 compared with the existing datum and depth migration methods.
作者 杨涵方 周向东 YANG Hanfang;ZHOU Xiangdong(School of Computer Science,Fudan University,Shanghai 200433,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第4期310-316,共7页 Computer Engineering
基金 国家自然科学基金(61370157)
关键词 跨领域图像分类 深度学习 迁移学习 主成分分析 稀疏正则化 cross domain image classification deep learning transfer learning Principal Component Analysis(PCA) sparse regularization
  • 相关文献

参考文献1

二级参考文献24

  • 1徐雅静,汪远征.主成分分析应用方法的改进[J].数学的实践与认识,2006,36(6):68-75. 被引量:120
  • 2Jindal N,Liu B.Opinion Spam and Analysis[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining.Los Angeles,USA:ACM Press,2008:219-230.
  • 3Lim E P,Nguyen V A,Jindal N,et al.Detecting Product Review SpammersUsing Rating Behaviors[C]// Proceedings of the 19th ACM International Conference on Information and Knowledge Management.Toronto,Canada:ACM Press,2010:939-948.
  • 4Becker H,Naaman M,Gravano L.Selecting Quality Twitter Content for Events[C]//Proceedings of the 5th International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI Press,2011:442-445.
  • 5Choudhury M D,Counts S,Czerwinski M.Find Me the Right Content! Diversity-based Sampling of Social Media Spaces for Topic-centric Search[C]//Pro-ceedings of the 5th International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI Press,2011:129-136.
  • 6Sharifi B,Hutton M A,Kalita J K.Experiments in Micro-blog Summarization[C]//Proceedings of the 2nd Inter-national Conference on Social Computing.Minneapolis,USA:IEEE Press,2010:49-56.
  • 7Ramage D,Dumais S,Liebling D.Characterizing Micro-blogs with Topic Models[C]//Proceedings of the International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI Press,2010:130-137.
  • 8Xia Wei,He Yanxiang,Tian Ye,et al.Feature Expansion for Microblogging Text Based on Latent Dirichlet Allo-cation with User Feature[C]//Proceedings of the 6th Joint International Technology and Artificial Intelligence Conference.Chongqing,China:[s.n],2011:228-232.
  • 9Titov I,McDonald R.ModelingOnline Reviews with Multi-grain Topic Models[C]//Proceedings of the 17th International Conference on World Wide Web.Beijing,China:[s.n.],2008:111-120.
  • 10Li P,Jiang J,Wang Y.Generating Templates of Entity Summaries with an Entity-aspect Model and Pattern Mining[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.Uppsala,Sweden:Association for Computational Linguistics,2010:640-649.

共引文献4

同被引文献19

引证文献5

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部