期刊文献+

无线传感器网络中双层受限中继节点放置算法研究 被引量:1

Research on the placement algorithm of two-tiered constrained relay nodes in wireless sensor networks
下载PDF
导出
摘要 针对在三维空间中,对于中继节点(RN)的位置受限并且是双层拓扑的情况,提出了一种基于混合整数线性规划的中继节点放置算法,该算法首先考虑三维空间中继节点放置的物理层模型,然后基于混合整数线性规划(MIPS)给出最优能效的分簇,使得每个传感器节点与相应簇头之间的传输距离最小.仿真结果表明:与只考虑最小化簇内距离的中继节点放置算法相比,本算法在降低重传率和延长网络生命周期方面都有较大的改善. In three-dimensional space,when the location of relay nodes is limited and it is a two-layer topology,a relay location algorithm based on mixed integer linear programming(MILP)is proposed.The algorithm first considers the physical layer model placed by relay nodes in three-dimensional space.Then,the optimal energy efficient clustering is given based on mixed integer linear programming.So that the transmission distance between each sensor node and its corresponding cluster head is the minimized.The simulation results show that compared with the traditional relay node algorithm that only considers the minimum intra cluster distance,the algorithm has a great improvement in reducing the retransmission rate and prolonging the life cycle of the network.
作者 向浩凯 周小平 王家南 李莉 黄佳慧 Xiang Haokai;Zhou Xiaoping;Wang Jianan;Li Li;Huang Jiahui(The College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)
出处 《上海师范大学学报(自然科学版)》 2018年第2期220-224,共5页 Journal of Shanghai Normal University(Natural Sciences)
基金 上海市自然科学基金项目(16ZR1424500)
关键词 中继节点 无线传感器网络 双层受限 整数线性规划 relay node wireless sensor networks two-tiered constrained mixed integer linear programming
  • 相关文献

参考文献1

二级参考文献17

  • 1I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor networks: A survey", Computer Networks~ Vol.38, No.4, pp.393-422, 2002.
  • 2A. Bari, A. Jaekel, J. Jiang and Y. Xu, "Design of fault tol- erant wireless sensor networks satisfying survivability and life- time requirements", Computer Communications, Vol.35, No.3, pp.320 -333, 2012.
  • 3X. Cheng, D-Z Du, L. Wang and B. Xu, "Relay sensor place- ment in wireless sensor networks", Wireless Networks, Vol.14, No.3, pp.347-355, 2008.
  • 4D. Chen, D.Z. Du, X.D. Hu, et al., "Approximations for Steiner trees with minimum number of Steiner points", Theoretical Computer Science, Vol.262, No.1, pp.83- 99, 2001.
  • 5G.H. Lin and G. Xue, "Steiner tree problem with minimum number of Steiner points and bounded edge-length", Informa- tion Processing Letters, Vol.69, No.2, pp.53-57, 1999.
  • 6A. Kashyap, S. Khuller and M. Shayman, " Relay placement for fault tolerance in wireless networks in higher dimensions", Computational Geometry, Vol.44, No.4, pp.206- 215, 2011.
  • 7A. Kashyap, S. Khuller and M. Shayman, "Relay Placement for Higher Order Connectivity in Wireless Sensor Networks", IN- FOCOM 2006 25th IEEE International Conference on Com- puter Communications Proceedings, pp.1 -12, 2006.
  • 8S.Khuller and U. Vishkin, "Biconnectivity yapproximations and graph carvings", Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, ACM, pp.759-770. 1992.
  • 9A. Frank and E Tardos, "An application of submodular flows", Linear Algebra and its Applications, Vol.114, pp.329-348, 1989.
  • 10S. Khuller and B. Raghavachari, " Improved approximation al- gorithms for uniform connectivity problems", Journal of Algo- rithms, Vol.21, No.2, pp.434-450, 1996.

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部