期刊文献+

基于双边滤波和NSST的红外与可见光图像融合 被引量:3

Infrared and Visible Image Fusion Based on Bilateral Filters and NSST
下载PDF
导出
摘要 针对传统图像融合容易导致目标信息减弱、背景细节不清晰的问题,提出一种基于非下采样剪切波变换(non-subsampled shearlet transform,NSST)和双边滤波的融合算法;首先,利用双边和高斯滤波器处理红外与可见光图像,得到包含红外目标的大尺度边缘图像;然后,采用NSST分解红外与可见光图像,得到相应的高频和低频子带系数,低频部分利用已得的大尺度边缘图像指导加权,高频部分采用绝对值取大的方法;最后将融合后的各频带系数经过NSST逆变换得到融合结果;实验结果显示,该方法既能有效突出红外目标,又充分保留了可见光图像中的背景信息,在信息熵、互信息和峰值信噪比等客观评价指标上也都优于传统的融合算法。 In traditional infrared and visible image fusion results,target is tend to be weakened and details of background are blurred.To solve these problems,a new fusion algorithm based on bilateral filters and non-subsampled shear let transform(NSST)is proposed.Firstly,bilateral and Gaussian filters are applied in source images to obtain the image which includes large-scale edges and infrared target information.Then,the source images are decomposed into low and high frequency sub-bands by NSST.The image with large-scale edges is used to guide the fusion of the low frequency sub-band,and the rule of maximum absolute value selection is used for the fusion of high frequency sub-bands.Finally,perform the inverse transform in order to obtain the final fusion result.Experiments demonstrate that the proposed fusion method can obviously highlight the target area,preserve details of the background area,and the quality evaluation indexes including entropy,mutual information,and peak signal to noise ratio is increased compared with conventional algorithm.
作者 徐丹萍 王海梅 Xu Danping;Wang Haimei(College of Automation,Nanjing University of Science&Technology,Nanjing 210094,China)
出处 《计算机测量与控制》 2018年第4期201-204,共4页 Computer Measurement &Control
关键词 图像融合 双边滤波 高斯滤波 非下采样剪切波变换 image fusion bilateral filter Gaussian filter NSST
  • 相关文献

参考文献5

二级参考文献51

  • 1赵鹏,王霓虹,浦昭邦.基于多尺度形态学滤波器的图像融合新方法[J].光学技术,2006,32(z1):207-209. 被引量:1
  • 2彭启民,贾云得.基于小波变换的全向图像分辨率增强方法[J].电子学报,2004,32(11):1875-1879. 被引量:9
  • 3杜峰,施文康,邓勇,朱振幅.一种快速红外图像分割方法[J].红外与毫米波学报,2005,24(5):370-373. 被引量:31
  • 4Parjares G, Cruzdela J M. A wavelet-based image fusion tutorial [ J ]. Pattern Recognition, 2004, 37 ( 9 ) : 1855 - 1572.
  • 5Jinshan T. A constrast based image fusion technique in the DCT domain [J]. Digital Signal Processing,200d, 14 (3) :218 -226.
  • 6Amolins K, Yun Z, Dare Peter. Wavelet based image fu- sion techniques-an introduction, review and comparison [ J ]. ISPRS Journal of Phototrammetry & Remote Sens- ing,2007,62 (4) : 249 - 263.
  • 7Xia C, Licheng J, Fang L, et al. Multicontourlet-based a- daptive fusion of infrared and visible remote sensing ima- ges [ J ]. IEEE Geoscience and Remote Sensing Letters,2010,7(3):549 -553.
  • 8Lira W. The discrete shearlet transform:A new directional transform and compactly supported shearlet frames [ J ~. IEEE Transactions on Image Processing, 2010, 19 ( 5 ) : 1166 - 1180.
  • 9Petrovic V, Xydeas C. On the effects of sensor noise in pixellevel image fusion performance [ C ]//Proceedings of the 3rd International Conference on Image Fusion. Paris, France : IEEE ,2000 : 14 - 19.
  • 10许开宇,李双一.基于小波变换的图像融合算法的实现[J].红外技术,2007,29(8):455-458. 被引量:22

共引文献79

同被引文献24

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部