期刊文献+

基于数据挖掘的智能电网安全漏洞挖掘模型 被引量:13

Research and design of security vulnerability mining model of smart grid based on data mining technology
下载PDF
导出
摘要 结合数据对智能电网安全漏洞进行准确识别,可以有针对性的进行防御,提高智能电网的安全性。当前的漏洞检测方法存在误差大、效率低、误报率和漏报率大、容易受到外界环境干扰等问题。提出了一种基于数据挖掘技术的智能电网安全漏洞挖掘模型,定义了漏洞数据特征的相关参数,对智能电网运行数据和历史数据进行属性划分,依据上述相关参数构建一定的关联规则,将漏洞辨识矩阵和数据关联规则进行结合,建立智能电网安全漏洞挖掘模型,完成智能电网安全漏洞挖掘。实验结果表明,与传统的权限行为分析方法相比,该方法进行安全漏洞挖掘准确、误报率和漏报率较小、实用性强。 The accurate tap of smart grid security vulnerabilities can be targeted for defense and improve the security of smart grid.The traditional vulnerability detect methods exist large error,low efficiency,large false positive rate and false negative rate,environmental interference and other issues.The smart grid security vulnerabilities mining model was proposed based on data mining technology.The parameters related to vulnerability data were defined.The attribute partition for operation data and historical data of smart grid was conducted.Certain association rules were constructed on the basis of the relevant parameters.The vulnerability identification matrix was combined with data association rules.The smart grid security vulnerabilities mining model was built to complete the smart grid security vulnerabilities mining.The experimental results show that compared with the traditional authority behavior analysis method,the new method has the advantages of accurate security vulnerabilities mining,small false positive rate and false negative rate and strong practicability.
作者 牛文楠 鲍鹏飞 唐会东 邓琨 魏恩伟 NIU Wen-nan;BAO Peng-fei;TANG Hui-dong;DENG Kun;WEI En-wei(Shenzhen Power Supply Co.,Ltd.,Shenzhen Guangdong 518048,China;Shenzhen Comtop Information Technology Co.,Ltd.,Shenzhen Guangdong 518034,China)
出处 《电源技术》 CAS CSCD 北大核心 2018年第4期593-596,共4页 Chinese Journal of Power Sources
关键词 数据挖掘 智能电网 安全漏洞 辨识矩阵 关联规则 data mining smart grid security vulnerability identification matrix association rule
  • 相关文献

参考文献8

二级参考文献41

  • 1陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 2BASS T. Intrusion detection systems & multisensory data fusion: creating cyberspace situational awareness [J]. Communications of the ACM, 2000, 43(4): 99-105.
  • 3D'AMBROSIO B. Security Situation Assessment and Response Evaluation (SSARE) [C]// DISCEX'01: Proceedings of 2001 DARPA Information Survivability Conference & Exposition. Washington, D.C.: IEEE Computer Society, 2001: 387-394.
  • 4ABAD C, YURCIK W. UCLog+: a security situational awareness system for incident storage, querying, and correlation [C]// ICTSM 2006: Proceedings of the 14th International Conference on Telecommunication Systems Modeling and Analysis. Washington, D.C.: IEEE Computer Society, 2006: 316-322.
  • 5ONWUBIKO C, OWENS T. Situational awareness in computer network defense principles, methods and applications [M]. Hershey: IGI Global Snippet, 2012: 125-137.
  • 6KAVOUSI F, AKBARI B. Automatic learning of attack behavior patterns using Bayesian networks [C]// IST'2012: Proceedings of the 6th International Symposium on Telecommunications. Washington, D.C.: IEEE Computer Society, 2012: 999-1004.
  • 7QIU H Y, OSORIO Sandboxing[C]// IEEE Conference on Malicious IEEE, 2013: 132-141. F. Static Malware l)etection with Segmented Computer Society. The 8th International and Unwanted Software, Fajardo. New York:.
  • 8WRENCH, PETER M, 1P.WIN, et al. Towards a Sandbox tbr the 1)eobfuscation and Dissection of PHP Malware [C]// IEEE Computer Society. Information Security for South Africa (ISSA), Johannesburg. New York: IEEE. 2014: 1-8.
  • 9GregDay.文章名[Advanced persistent threats-time to runfor cover].
  • 10AllLslam.文章名[2013:Attack Trends For The Year Ahead].

共引文献62

同被引文献151

引证文献13

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部