期刊文献+

基于GASFLOW的AP1000核电厂氢气风险分析 被引量:1

Containment Hydrogen Risk Analysis of AP1000 Nuclear Power Plant Based on GASFLOW
下载PDF
导出
摘要 采用流体动力学软件GASFLOW对AP1000核电厂进行建模,在建模过程中,采用的直角坐标系的设置可以增加系统模型的准确性。采用MAAP计算的DVI(直接注入管线)双端断裂事故源项作为输入,研究不同隔间内氢气风险。结果显示:氢气在安全壳内形成分层现象,且壁面附近氢气浓度较高;除了破口隔间在不足60 s的时间内出现FA(Flame Acceleration)准则数大于1的情况外,其他隔间或其他时间段内均没有出现FA准则数大于1的情况。所有隔间内的DDT(Deflagration to Detonation Transition)准则数均小于1,可以认为所研究的事故工况下,均不存在燃爆风险。全局可燃气体云团的体积大约占了安全壳自由容积的1/30,安全壳内不可能发生全局快燃风险。 AP1000 nuclear power plant(NPP)model is developed with the computational fluid dynamic code GASFLOW.During the simulating,Cartesian coordinate system is used,for the AP1000 nuclear power plant,the usage of Cartesian coordinate system will enhance the veracity.The DVI double end guillotine break source from MAAP was used to study the hydrogen risk of different room.The results show that,the hydrogen in the containment will present layered structure,and the hydrogen density is higher near the cold wall.The FA number of the broken room is higher than 1 within 60 s,the other rooms’FA numbers and DDT numbers are all lower than 1.That means in the conditions we studied,all the room are without DDT risk.The global sigma cloud volume is less than 1/30 of the containment free volume,so the containment is without global FA.
作者 李精精 王辉 陈巧艳 LI Jing-jing;WANG Hui;CHEN Qiao-yan(China Nuclear Power Engineering Co.,Ltd.,Beijing,100840,China)
出处 《核科学与工程》 CAS CSCD 北大核心 2018年第2期268-272,共5页 Nuclear Science and Engineering
关键词 GASFLOW 严重事故 氢气风险 核电厂 GASFLOW Severe accidents Hydrogen risk Nuclear power plant
  • 相关文献

参考文献1

二级参考文献11

  • 1SPORE J W, TRAVIS J R, ROYL P, et al. GASFLOW: A computational fluid dynamics code for gases aerosols, and combustion, Volume 2: User's manual, LA-13357-MS, FZKA-5994 [R]. USA: LANL; Germany: FZK, 1998.
  • 2TRAVIS J R, SPORE J W, ROYL P, et al. GASFLOW: A computational fluid dynamics code for gases aerosols, and combustion, Volume 1: Theory and computational model, LA-13357-MS, FZKA-5994[R]. USA: LANL: Germany: FZK, 1998.
  • 3WOODCOCK J, ANDREYCHEK T, CONWAY L, et al. WGOTHIC application to AP600 and AP1000, Rev. 1, WCAP-15862[R]. America: Westinghouse, 2004.
  • 4TILLS J, NOTAFRANCESCO A. Application of the MELCOR code to design basis PWR large dry containment analysis, SAND2009-2858[R]. America: SANDIA, 2009.
  • 5PHILIPP B, HANS-JOSEF A. Simulation of AP1000's passive containment cooling with the German containment code system COCOSYS[C] //Nuclear Energy for New Europe. Bovec, Slo- venia: [s. n. ], 2011.
  • 6SINKUNAS S, GYLYS J. Analysis of laminar liquid film flowing down a vertical surface[C]// Fourth International Conference on CFD in the OilandGas. Norway: [s. n.], 2005.
  • 7YU YQ, WEISJ, YANGY H, et al. Experi- mental study of water film falling and spreading on a large vertical plate[J]. Progress in Nuclear Energy, 2012, 54: 22-28.
  • 8BIRD R B, STEWART W E, LIGHTFOOT E N. Transport Phenomena[M]. New York: John Wiley and Sons, 1960.
  • 9ROHSENOW W M, CHOI H. Heat, mass, and momentum transfer[M]. New Jersey: Prentice- Hall, 1961.
  • 10OFSTUN R. AP1000 LOCA containment pres- sure analysis, Rev. 2, APP-SSAR-GSC-523[R]. America: Westinghouse, 2003.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部