期刊文献+

基于压缩感知和虚警概率的电力线脉冲噪声抑制方法 被引量:4

Impulse Noise Mitigation Method Based on Compressive Sensing and False-alarm Probability in Power Line Communication
下载PDF
导出
摘要 针对OFDM电力线通信中噪声抑制方法依赖于脉冲噪声特征参数及脉冲噪声稀疏度的问题,提出一种基于压缩感知和虚警概率的宽带电力线脉冲噪声抑制算法.该算法利用OFDM零子载波观测脉冲噪声投影,采用基追踪降噪方法对脉冲噪声进行粗估计,并设计基于虚警概率的自适应脉冲噪声检测门限,根据门限得到粗估计的脉冲噪声支撑集,在支撑集上通过最小二乘方法对脉冲噪声幅度进行重构,接收信号减去估计的脉冲噪声可得到去噪的OFDM信号.仿真结果表明,提出的算法在未知脉冲噪声稀疏度的情况下可以对噪声信号进行重构,算法的性能优于传统压缩感知及非线性去噪方法,能可靠有效的对宽带电力线脉冲噪声进行抑制. In terms of the problem that the suppression of impulse noise(IN)in orthogonal frequency division multiplexing(OFDM)based power line communication depends on the characteristic parameters and sparsity of IN,this paper proposed a suppression algorithm based on compressive sensing(CS)and False-Alarm probability.In this approach,the projection of IN is observed using OFDM zero carriers,and the rough estimation of IN is carried out by using the method of base pursuit denoise(BPDN).Then,an adaptive impulse noise detection threshold based on false alarm probability is designed,and the support set of IN is obtained according to the designed threshold.Finally,the IN in power line communication is reconstructed by the least square method.The original OFDM signal can be derived by subtracting the estimated IN from the received OFDM signal.The simulation results show that the proposed algorithm can reconstruct the IN well even if the sparsity conditions of IN is unknown,the performance of the algorithm is superior to the traditional compressed sensing and the nonlinear denoising methods,and this algorithm is reliable and effective for mitigating IN in broadband power line communication.
作者 谭周文 刘宏立 陈炳权 马子骥 TAN Zhouwen;LIU Hongli;CHEN Bingquan;MA Ziji(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;College of Information,Hunan University of Humanities,Science and Technology,Loudi 417100,China;College of Physics Science and Information Engineering,Jishou University,Jishou 416000,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第4期89-95,共7页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61771191) 中央国有资本经营预算项目(财企[2013]470号) 中央高校基本科研项目(1053214004) 湖南省自然科学基金资助项目(2017JJ2052)~~
关键词 电力线通信 虚警概率 压缩感知 脉冲噪声 正交频分复用 power line communication false alarm probability compressive sensing impulse noise OFDM
  • 相关文献

参考文献2

二级参考文献19

  • 1AKMELIAWATI R, JIMOH M, SALAMI E, et al. Vision- based hand posture detection and recognition for sign language --a study[C]//Proceedings of the 4th International Confer- ence on Macaronis (ICOM). New York: IEEE, 2011: 1-6.
  • 2ONG E, BOWDEN R. A boosted classifier tree for hand shape detection[C]//Proceedings of International Conference on Au- tomatic Face and Gesture Recognition. New York: IEEE, 2004:889-894.
  • 3AMIN M A, YAN H. Sign language finger alphabet recogni- tion from Gabor-PCA representation of hand gestures[C] // Proceedings of the Sixth International Conference on Machine Learning and Cybernetics. New York: IEEE, 2007: 2218- 2223.
  • 4NIEBLES J, WANG H, LI F F. Unsupervised learning of hu- man action categories using spatial temporal words [J]. Inter- national Journal of Computer Vision, 2008, 79(3) .. 299-318.
  • 5DARDAS N H, PETRIU E M. Hand gesture detection and recognition using principal component analysis [C]// Proceed- ings of International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). Otta- wa: IEEE, 2011: 1-6.
  • 6DONOHO D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306.
  • 7WRIGHT J, YANG A, GANESH A, etal. Robust face rec- ognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2) : 2 l0 -227.
  • 8COLLUMEAU J F, LECONGE R, EMILE B, et al. Hand gesture recognition: comparative study of global, semi-local and local approaches [C]//Proeeedings of the 7th International Symposium on Image and Signal Proeessing and Analysis. Dubrovnik, Croatia : IEEE, 2011 : 247 - 252.
  • 9DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR). Montbonnot, France: IEEE, 2005: 886-893.
  • 10SINGH C, UPNEJA R. Fast and accurate method for high or- der zernike moments computation [J]. Applied Mathematics and Computation, 2012, 218(15): 7759-7773.

共引文献7

同被引文献10

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部