期刊文献+

采用多样性选择的量子粒子群双向聚类算法 被引量:3

Biclustering algorithm using diversify optional quantum particle swarm optimization
下载PDF
导出
摘要 双向聚类已成为分析基因表达数据的一种重要工具,可以同时从基因和条件两个方向寻找具有相同表达波动的簇。但双向聚类是一种多目标优化的局部搜索算法,处理繁杂的基因数据时容易陷入局部最优。为提高算法的全局搜索能力,提出了一种多样性选择的量子粒子群双向聚类算法(Diversify-Optional QPSO,DOQPSO)。算法首先采用DOQPSO处理基因数据,然后用改进的FLOC算法进行贪心迭代寻找双向聚类,以求得更为理想的结果。算法通过实验仿真,并与FLOC算法和QPSO算法进行比较,结果证明DOQPSO双向聚类算法具有更好的全局寻优能力,且聚类效果更佳。 One of the important tools for analyzing gene expression data is biclustering method.It focuses on finding a subset of genes and a subset of experimental conditions that together exhibit coherent behavior.However,biclustering is a multiple objective local search algorithm.When dealing with gene expression data,the results fall into local optimal area very easily.To overcome this defect and improve the global search ability of the algorithm,this paper proposes a diversity optional quantum particle swarm biclustering algorithm(Diversify-Optional QPSO,DOQPSO).Firstly,algorithm uses DOQPSO to process genetic data,and then uses the improved greedy iterative FLOC to search for biclustering,in order to achieve the more ideal results.Comparing with FLOC and QPSO,the experimental results show that DOQPSO biclustering algorithm has better global convergence ability,and better clustering effect.
作者 陈佳瑜 李梁 罗云 CHEN Jiayu;LI Liang;LUO Yun(College of Computer and Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第9期42-46,共5页 Computer Engineering and Applications
基金 重庆市应用开发计划项目(No.CSTC2013yykf A40002)
关键词 双向聚类 基因表达数据 量子粒子群算法 多样性选择 FLOC算法 biclustering gene expression Quantum-behaved Particle Swarm Optimization(QPSO) diversified options Flexible Overlapped Biclustering(FLOC)
  • 相关文献

参考文献5

二级参考文献47

  • 1王长本,刘兴晖,王伟灵,周新.基因表达数据的聚类分析[J].国外医学(临床生物化学与检验学分册),2004,25(4):359-362. 被引量:3
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 3张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 4Zhang Zong-hong, Alvin Teo. Mining deterministic biclusters in gene expression data[C]. Proceedings of the Fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE'04) ,2004, 2173-2180.
  • 5Wang Hai-xun, Wang wei, Yang yong, et al. Clustering by pattern similarity in large data sets[C]. Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, 2002,394-405.
  • 6Sungroh Yoon, Giovanni De Micheli. An application of zerosuppressed binary decision diagrams to clustering analysis of DNA mieroarray data[C]. Proceedings of the 26th Annual International Conference of the IEEE EMBS,2004,2925-2928.
  • 7Amos Tanay, Roded Sharan, Ron Shamir. Discovering statistically significant biclusters in gene expression data[J]. Bioinformatics, 2002,18(Sup. 1),S136-S144.
  • 8Laura Lazzeroni,Art Owen. Plaid models for gene expression data[R]. Technical report, Stanford University, 2000.
  • 9Sheng Qi-zheng, Yves Moreau, Bart De Moor. Biclustering micrarray data by gibbs sampling[J]. Bioinformatics, 19(Sup. 2): ii196-ii205, 2003.
  • 10Eran Segal, Ben Taskar, Audrey Gasch,et al. Rich probabilistic models for gene expression[J]. In Bioinformatics, 2001, 17 (Sup. 1) :S243-S252.

共引文献28

同被引文献38

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部