摘要
由于无线信道具有共享特性,节点之间竞争不可避免。传统P-坚持载波感知多址(CSMA)的传输概率对吞吐量有很大影响[1]。笔者设计了一种多态增强学习(RL)方法,在多态Q学习模型中提出了三种学习类型,定义传输概率Q为节点学习策略,节点没有关于网络的先验信息,只利用历史感知信息包括碰撞次数及成功传输率,来学习最佳策略[2-3]。并通过综合仿真,对不同状态定义下的Q学习模型性能进行了比较。
Due to the shared nature of wireless channels,the competition between nodes is inevitable.The traditional P-persistent carrier-aware multiple access(CSMA)transmission probability has a great influence on throughput.A multi-state reinforcement learning(RL)method is designed for this purpose.Three state representations are proposed in this multi-state Q-learning model,agents have no priori information about the network and learn their optimal strategy using the historical sensory information including the number of collisions or successful transmissions.The performance of the proposed Q-learning agents with different state definitions in comparison with each other is examined via comprehensive simulation results.
作者
雷小葳
李长云
徐曦
杲玄玄
Lei Xiaowei;Li Changyun;Xu Xi;Gao Xuanxuan(School of Computer Science,Hunan University of Technology,Zhuzhou Hunan 412008,China)
出处
《信息与电脑》
2018年第6期20-22,共3页
Information & Computer
基金
湖南省教育厅科学研究项目"多射频多信道无线传感网频谱感知及面向业务信道分配研究"(项目编号:15C0408)
湖南省重点研发计划项目"多模式光载无线工业互联技术及设备研发"(项目编号:2016GK2016)
关键词
载波感知
增强学习
P-坚持
carrier sense
reinforcement learning
P-persistent