摘要
深度学习被广泛应用于2D图像的质量评价(2D-IQA)研究中,而在3D图像质量评价(3D-IQA)中还没有展开深入研究。针对对齐失真立体图像,本文提出了一种基于权重组合学习的无参考立体图像质量评价模型。通过有效融合两支独立的单视图质量评价深度网络模型,将左右眼视图作为整体对象进行评估;再根据双目竞争原理,又设计了一种权重深度网络用以估计左右眼的不同能量分布;最后,这两个子网络组合成端到端的权重组合学习深度质量网络。实验结果证明:该模型对于对称失真的立体图像质量评价有显著提升。
Recently deep learning has been largely applied to 2D image quality assessment(2D-IQA)but rarely to 3D image quality assessment(3D-IQA).In this letter,we propose a new method for blind symmetrically distorted stereoscopic images quality assessment utilizing multiple features fusion in deep network to evaluate the left-and-right views as an integration with no extra cost.According to binocular rivalry,a weighted ensemble learning network is developed for learning energy of dominant eye.We integrate these two networks into a full end-to-end network called a Weighted Ensemble Deep Quality Network(WEDQN).Our experimental results can demonstrate that the proposed method leads to significant improved quality prediction of symmetrically distorted stereoscopic images.
作者
潘达
史萍
PAN Da;SHI Ping(Information Engineering School,Communication University of China,Beijing 100024,China)
出处
《中国传媒大学学报(自然科学版)》
2018年第1期41-45,共5页
Journal of Communication University of China:Science and Technology
关键词
图像质量评价
立体图像
深度学习
image quality assessment
stereoscopic images
deep learning