摘要
通过对切面技术、归纳法等的创意使用,证明了R^n中凸集顶点的存在性,进而证明了R^n中一般有界闭凸集中任意一点同样可表示为顶点的凸组合.
In n-dimensional Euclidean space,using tangent plane technique,mathematical induction and so on,the existence of convex sets'extreme points is proved,and it is further proved that an arbitrary point in general bounded closed convex set(not limited to convex polyhedron)can also be expressed as a convex combination of the extreme points.
作者
姚志敏
YAO Zhimin(Department of Computer Science and Engineering,Guangdong Peizheng College, Guangzhou 510830,Guangdong,China)
出处
《平顶山学院学报》
2018年第2期8-11,共4页
Journal of Pingdingshan University
关键词
顶点
切面
凸集
凸组合
仿射集
extreme point
tangent plane
convex set
convex combination
affine set