期刊文献+

R^n中一般凸集上的顶点凸组合表示定理

Generalization of the Theorem that Convex Polyhedron can Be Expressed as the Convex Combinations of its Extreme Points to General Convex Set in Euclidean Space
下载PDF
导出
摘要 通过对切面技术、归纳法等的创意使用,证明了R^n中凸集顶点的存在性,进而证明了R^n中一般有界闭凸集中任意一点同样可表示为顶点的凸组合. In n-dimensional Euclidean space,using tangent plane technique,mathematical induction and so on,the existence of convex sets'extreme points is proved,and it is further proved that an arbitrary point in general bounded closed convex set(not limited to convex polyhedron)can also be expressed as a convex combination of the extreme points.
作者 姚志敏 YAO Zhimin(Department of Computer Science and Engineering,Guangdong Peizheng College, Guangzhou 510830,Guangdong,China)
出处 《平顶山学院学报》 2018年第2期8-11,共4页 Journal of Pingdingshan University
关键词 顶点 切面 凸集 凸组合 仿射集 extreme point tangent plane convex set convex combination affine set
  • 相关文献

参考文献2

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部