摘要
针对出租车运营过程中出现的乘客滞留、出租车分配不均等问题,笔者提出基于密度的聚类算法挖掘载客热点区域的方法,采用基于密度的聚类算法挖掘载客高峰时段出租车载客热点区域。实验结果表明,三天时间中载客高峰时段内聚类得出载客热点的分布特征同样具有重复性和普适性。该方法对于合理规划出租车候客泊位、提高载客率提供了定量的参考依据和理论支持。
For taxi operators during taxi passengers stranded,uneven distribution,this mining method of passenger hotspot density based clustering algorithm using clustering algorithm based on density of passenger peak period passenger taxi hot spot mining.The experimental results show that in the three day period,the distribution of passenger hotspots has the same repeatability and universality.This method provides a quantitative reference and theoretical support for rational planning of taxi waiting berths and increasing passenger carrying capacity.
作者
王亚飞
杨卫东
徐振强
Wang Yafei;Yang Weidong;Xu Zhengqiang(College of Information Science and Engineering,Henan University of Technology,Zhengzhou Henan 450001,China;School of Geospatial Information,The PLA Information Engineering University,Zhengzhou Henan 450001,China)
出处
《信息与电脑》
2017年第16期141-143,共3页
Information & Computer
基金
河南省教育厅支撑计划项目课题"基于博弈论的车载网络隐私保护机制与系统"(项目编号:162102410019)
河南省高等学校重点科研项目计划"基于大规模出租车轨迹数据的路径通行时间预测"(项目编号:16A520006)