期刊文献+

一种改进的K-means聚类算法 被引量:6

An Improved K-means Clustering Algorithm
下载PDF
导出
摘要 K-means算法是一种应用非常广泛的聚类算法,它有很多优点,比如操作简单、效率很高、伸缩性较好,但也存在一些不足,比如聚类个数需要人工输入、初始聚类中心随机产生可能导致局部最优解、孤立点对聚类结果会产生较大影响等。笔者主要针对K-means算法的K值获取和初始聚类中心的选取对算法进行改进,并通过实验对比了原算法和改进算法,实验表明改进算法在聚类准确率和质量方面都优于原算法。 The K-means algorithm is a very widely used clustering algorithm.It has many advantages,such as simple operation,high efficiency,good scalability,but there are some shortcomings,such as the number of clusters need manual input,the random clustering of the initial clustering center may lead to local optimal solution,and the isolated point will have a great influence on the clustering result.In this paper,the K-means algorithm is used to improve the K-means and the initial clustering center.The algorithm is compared with the original algorithm and the improved algorithm.The experimental results show that the improved algorithm is superior to the original algorithm.
作者 夏长辉 Xia Changhui(School of Computer Science,North China University of Technology,Beijing 100144,China;Department of Information Engineering,Shougang Institute of Technology,Beijing 100144,China)
出处 《信息与电脑》 2017年第14期40-42,共3页 Information & Computer
关键词 数据挖掘 K-MEANS算法 K值 初始聚类中心 data mining K-means algorithm K value initial clustering center
  • 相关文献

参考文献4

二级参考文献25

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 2李双虎,张风海.一个新的聚类有效性分析指标[J].计算机工程与设计,2007,28(8):1772-1774. 被引量:14
  • 3普运伟,朱明,金炜东,胡来招.核聚类算法最佳聚类数的自适应确定方法[J].计算机工程,2007,33(4):11-13. 被引量:9
  • 4毛韶阳,李肯立.优化K-means初始聚类中心研究[J].计算机工程与应用,2007,43(22):179-181. 被引量:26
  • 5Redmond S J,Heneghan C.A method for initializing the K-means clustering algorithm using kd-trees[J].Patten Recognition Letter, 2007,28 : 965-973.
  • 6Han J W,Wen S P.DataMing:Concepts and techniques[M].San Francisco:Morgan Kaumann Publishers,2000.
  • 7Steinbach M,Karypis G,Kumar V.A comparison of document clustering techniques,TR00-034[R].USA:University of Minnesota,2000.
  • 8Michael J A Berry,Gordon S Linoff.数据挖掘—客户关系管理的科学和艺术[M].袁卫译.北京:中国财政经济出版社,2004.
  • 9G. Katypis, E H Hart, V Kumar. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling [J]. Computer, 1999, 32(8):68-75.
  • 10M Indulska, M E Orlowska. Gravity based spatial clustering [C]//Proceedings of the 10th ACM international symposium on Advances in geographic information systems. United States: Association for Computing Machinery, 2002: 125-130.

共引文献74

同被引文献32

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部