期刊文献+

基于U-net网络的肺部肿瘤图像分割算法研究 被引量:6

Lung Tumor Image Segmentation Algorithm Based on U-net Network
下载PDF
导出
摘要 肺癌病灶大多具有体积小、形态多变、与胸腔内膜粘连等特点。随着CT扫描技术推广应用,肺部影像数据呈爆炸增长趋势,这给仅能依赖肉眼观察CT图像从而作出判断的影像科医生带来极大的挑战。针对这一问题,笔者提出了一种基于U-net的肺部肿瘤图像自动分割算法来辅助影像科医生作出判断。其具体实现流程为:先以原CT图像和由专业医生分割的图像为基础,将预处理后的图像输入U-net网络进行模型训练,得到训练模型,并用验证集中的图像验证。笔者所提出的U-net神经网络分割模型的JS准确率达到0.885 5。实验结果显示,该方法能有效分割CT图像中的肿瘤区域,且相比于传统算法更加精确高效。 Most of the lung cancer lesions are characterized by small size,variable morphology and adhesion to the intima of the thoracic cavity.With the popularization and application of CT scanning technology,the image data of the lungs show an explosive growth trend.This poses a great challenge to the image doctors who can only rely on the naked eye to observe the CT images and make judgement.In order to solve this problem,a U-net based automatic segmentation algorithm for lung tumor images is proposed to assist the image surgeon to make a judgment.The specific implementation process is as follows:first,the original CT image and the image segmented by professional doctors are used as the basis,and the pre processed images are input into the U-net network to train the model,and the training model is obtained,and verified by the image in the verification set.The JS accuracy rate of the U-net neural network segmentation model proposed by the author is 0.8855.The experimental results show that the method can effectively segment the tumor area in the CT image,and is more accurate and efficient than the traditional algorithm.
作者 周鲁科 朱信忠 Zhou Luke;Zhu Xinzhong(College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua Zhejiang 321004,China)
出处 《信息与电脑》 2018年第5期41-44,共4页 Information & Computer
关键词 肺部肿瘤 CT图像 U-net网络 lung tumor CT image U-net network
  • 相关文献

参考文献7

二级参考文献32

  • 1郑丽,潘建平.基于数学形态学的遥感图像道路提取[J].铁道勘察,2010,36(1):12-15. 被引量:5
  • 2廖美琳,高玉堂.上海市区人群中肺癌病员预后因素的研究[J].中华结核和呼吸杂志,1993,16(1):36-38. 被引量:24
  • 3李天庆,张毅,刘志,胡东成.Snake模型综述[J].计算机工程,2005,31(9):1-3. 被引量:47
  • 4Marr D.视觉计算理论[M].北京:科学出版社,1988.51-80.
  • 5Zhu S C,International Conference on COmputer Vision,1998年,847页
  • 6Liang P,Proceeding of the International Conference on Computer Vision,1998年,193页
  • 7Wang J P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,619页
  • 8Wang Y P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,10期,1040页
  • 9Wu M F,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,858页
  • 10Cheng H D,Pattern Recognition,1998年,31卷,7期,857页

共引文献614

同被引文献37

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部