期刊文献+

一种多列特征图融合的深度人群计数算法 被引量:6

A Deep Crowd Counting Algorithm Based on Multi-column Feature Map Fusion
下载PDF
导出
摘要 针对复杂开放环境下人群密度估计中的多尺度目标和小目标感知问题,提出了一种基于特征图融合的多列卷积神经网络的人群密度估计算法.所提出的特征图融合方式,一方面综合利用高层语义特征与底层细节特征,实现了对小目标的感知;另一方面大幅提高基础网络集成数量以应对目标多尺度问题,最终提高了人群密度估计的准确性.实验结果表明,所提算法有效提高了密集开放场景中人群计数的准确性. Aiming to solve the multi-scale targets and small person recognition problem of crowd counting in open scene,a feature map fusion convolutional neural network to promote the accuracy of density map regression was proposed.The feature map fusion had the two advantages.Firstly,it could combine the low-level detailed features with high-level semantic features,which promoted the detection of small person.Secondly,networks were assembled in the overall network by combining the feature maps,which largely promoted the network′s performance on recognizing multi-scale targets.The experimental results demonstrated the accuracy promotion of the proposed method in crowded open scenes.
作者 唐斯琪 陶蔚 张梁梁 潘志松 TANG Siqi;TAO Wei;ZHAGN Liangliang;PAN Zhisong(College of Command and Control Engineering,The Army Engineering University of PLA,Nanjing 210007,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2018年第2期69-74,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(61473149)
关键词 人群密度估计 卷积神经网络 特征图融合 开放场景 crowd density estimation convolutional neural network feature map fusion open scene
  • 相关文献

参考文献3

二级参考文献35

  • 1Velastin S A, Yin J H, Davies A C, et al. Analysis of Crowd Move- ments and Densities in Built-up Environments Using Image Process-ing//Proc of the lEE Colloquium on Image Processing for Transport Applications. London, UK,1993:1-6.
  • 2Kong Dan, Gray D, Tao Hai. A Viewpoint Invariant Approach for Crowd Counting// Proc of the 18th IEEE International Conference on Pattern Recognition. Hongkong, China, 2006, Ⅲ : 1187-1190.
  • 3Marana A N, da Costa L, Lotufo R A, et al. On the Efficacy of Texture Analysis for Crowd Monitoring// Proc of the International Symposium on Computer Graphics, Image Processing, and Vision. Impa, Brazil, 1998:354-361.
  • 4Rahmalan H, Nixon M S, Carter J N. On Crowd Density Estimation for Surveillance // Proc of the IEEE International Conferenee on Crime Detection and Prevention. London, UK, 2006 : 540-545.
  • 5Ma Wenhua, Huang Lei, Liu Changping. Advanced Local Binary Pattern Descriptors for Crowd Estimation//Proc of the IEEE Pacif-ic-Asia Workshop on Computational Intelligence and Industrial Ap-plication. Wuhan, China, 2008, Ⅱ : 958-962.
  • 6Allwein E L, Shapire R E, Singer Y. Reducing Multiclass to Bina-ry: A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research, 2001, 1 :113-141.
  • 7Fei B, Liu J. Binary Tree of SVM : A New Fast Multiclass Training and Classification Algorithm. IEEE Trans on Neural Networks, 2006, 17(3) : 696-704.
  • 8Pujol O, Radeva P. Discriminant ECOC: A Heuristic Method forApplication Dependent Design of Error Correcting Output Codes. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005,28 (6) :1007-1012.
  • 9Hsu C W, Lin C J. A Comparison of Methods for Muhi-Class Sup- port Vector Machines. IEEE Trans on Neural Networks, 2002, 13 (2) : 415-425.
  • 10Ma R, Li L, Huang W, et al. On Pixel Count Based Crowd Densi-ty Estimation for Visual Surveillance//Proc of the IEEE Conference on Cybernetics and Intelligent Systems. Singapore, Singapore, 2004:170-173.

共引文献38

同被引文献19

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部