期刊文献+

时空对象的聚类方法与应用初探 被引量:2

Study on Clustering Methods and Applications for Spatio-temporal Objects
下载PDF
导出
摘要 针对传统GIS数据模型描述信息有限以及对象化聚类分析内容不够全面的问题,提出了基于时空对象的聚类方法的流程和应用特点。首先总结了空间聚类和时空聚类的研究现状和主要方法;根据全空间信息系统中多粒度时空对象的描述框架及时空数据的"三维"特征,认为基于时空对象的聚类方法应包含3个方面:时空对象时间序列的相似性描述、基于时空对象的聚类计算及时空对象聚类的有效性评价;最后总结了该方法的特点并展望了其应用场景。基于时空对象的聚类方法研究有助于更全面地分析时空对象空间位置、属性特征及其变化特点,为多粒度时空对象的时空分析提供一种思路。 In view of the problem,the traditional GIS data models convey relatively limited information and the factors in clustering calculation are not comprehensive,the process and application characteristics of clustering analysis based on spatiotemporal objects are proposed.Firstly,main research and methods of spatial clustering and spatio-temporal clustering are summarized.On the basis of description framework of multi-granularity spatio-temporal objects in pan-spatial information system,three aspects in ST object clustering are concluded:similarity description of time series,clustering calculation based on ST objects,and validity assessment of clustering.Finally,we summed up the advantages and assumed the application scenarios.Clustering method based on ST objects contributes to comprehensive analysis of its spatial position,attribute character and variation.It also provides a ST analysis method for multi-granularity spatio-temporal objects.
作者 杨振凯 李响 陈达 YANG Zhenkai;LI Xiang;CHEN Da(Institute of Surveying and Mapping,Information Engineering University,Zhengzhou 450001,China;31682 Troops,Lanzhou 730020,China)
出处 《地理信息世界》 2018年第2期40-44,共5页 Geomatics World
基金 国家重点研发计划项目(2016YFB0502300) 国家自然科学基金(41471336)资助
关键词 聚类分析 时空对象 全空间信息系统 聚类流程 应用特点 clustering analysis spatial-temporal object pan-spatial information system clustering process application characteristics
  • 相关文献

参考文献11

二级参考文献256

  • 1周成虎.全空间地理信息系统展望[J].地理科学进展,2015,34(2):129-131. 被引量:164
  • 2王家耀,魏海平,成毅,熊自明.时空GIS的研究与进展[J].海洋测绘,2004,24(5):1-4. 被引量:67
  • 3张炜,李建中,刘禹.一种基于概率模型的预测性时空区域查询处理[J].软件学报,2007,18(2):279-290. 被引量:2
  • 4Laube P, Imfeld S, Weibel R. Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science, 2005, 19 (6): 639-668.
  • 5Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Pearson Addison-Wesley, 2006: 60-65.
  • 6Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. Foundations of Data Orga- nization and Algorithms, 1993, 730: 69-84.
  • 7Chen L, Ozsu M, Oria V. Robust and fast similarity search for moving object trajectories//Proceedings of the 2005 ACM SIGMOD International Conference on Man- agement of Data. New York, NY, USA: ACM, 2005: 491-502.
  • 8Lee S, Chun S, Kim D, et al. Similarity search for multidi- mensional data sequences//Proceedings of the 16th Inter- national Conference on Data Engineering. Washington D. C. USA: IEEE Computer Society, 2000: 599-608.
  • 9Elnekave S, Last M, Maitnon O. Incremental clustering of mobile objects//Proceedings of the 2007 IEEE 23rd In- ternational Conference on Data Engineering Workshop. Washington, DC, USA: IEEE Computer Society, 2007:585-592.
  • 10Sankoff D, Kruskal J. Time Warps, String Edits, and Mac- romolecules: The Theory and Practice of Sequence Com- parison. MA, USA: Addison-Wesley, 1983.

共引文献593

同被引文献34

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部