期刊文献+

基于多变量统计分析的冬小麦长势高光谱估算研究 被引量:11

Hyperspectral Estimation on Growth Status of Winter Wheat by Using the Multivariate Statistical Analysis
下载PDF
导出
摘要 利用高光谱分析技术实现冬小麦长势的准确、无损监测具有重要的实践意义。基于连续两年的氮素运筹试验,通过获取叶面积指数(LAI)、地上干生物量(AGDB)、地上鲜生物量(AGFB)、植株含水量(PWC)、叶绿素密度(CH.D)和氮素积累量(ANC)六个冬小麦长势指标及冬小麦冠层高光谱,引入主成分分析法(PCA)构建可表征冬小麦长势的综合长势指标(CGI),并结合偏最小二乘回归法(PLSR)构建CGI的高光谱估测模型。结果表明,除植株含水量外,其他长势指标与所构建的CGI都达到极显著水平,表明利用CGI可以表征各长势指标信息。对比CGI和其他各长势指标的PLSR模型表现可知,CGI光谱监测模型表现最优(R2=0.802,RMSE=1.268,RPD=2.015),也具有较高的预测精度和稳健度(R2=0.672,RMSE=1.732,RPD=1.489)。表明基于PCA方法所构建的CGI可以表征冬小麦长势,利用PLSR方法可以实现对冬小麦长势的准确监测,且监测效果要优于单一的冬小麦长势指标。 Accurate and non-destructive estimation on the growth status of winter wheat is of significance.The consecutive two-years experiments of nitrogen application in 2011-2012 and 2012-2013 were performed to obtain the canopy spectra and the six growth status indicators of winter wheat(Leaf area index,LAI;Above ground dry biomass,AGDB;Above ground fresh biomass,AGFB;Plant water content,PWC;Chlorophyll density,CH.D;Accumulated nitrogen content,ANC).The principle component analysis(PCA)was implemented to construct the comprehensive growth indicator(CGI),which could potentially represent the growth status of winter wheat.Furthermore,the method of partial least square(PLSR)was applied on constructing the hyperspectral prediction models of all growth indicators and validating the accuracy of CGI.The results showed that the constructed CGI significantly correlated with all the growth status indicators of winter wheat,excepting for the PWC.It indicated that the CGI could represent most of the information for the six indicators and the CGI also could be used to stand for the growth status of winter wheat.Moreover,the model performance of CGI and other six indicators were further compared,and it showed that the PLSR model of CGI performed best than other six indicators with R 2=0.802,RMSE=1.268,RPD=2.015.The CGI model was validated and proved to be more accurate and robust(R 2=0.672,RMSE=1.732 and RPD=1.489).The study showed that the CGI constructed with the PCA method could represent the growth status of winter wheat and the CGI model based on the PLSR method could be used to estimate the growth status of winter wheat.It also indicated that the multivariate statistical analysis had great potential to be applied in the field of crops by using the hyperspectral technology.
作者 王超 王建明 冯美臣 肖璐洁 孙慧 谢永凯 杨武德 WANG Chao;WANG Jian-ming;FENG Mei-chen;XIAO Lu-jie;SUN Hui;XIE Yong-kai;YANG Wu-de(College of Agronomy,Shanxi Agricultural University,Taigu 030801,China)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第5期1520-1525,共6页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(31371572 31201168) 中国博士后科学基金项目(2017M621105) 山西省回国留学人员项目(2014-重点) 山西省科学技术发展计划项目(201603D221037-3)资助
关键词 冬小麦 长势 高光谱 主成分分析 偏最小二乘回归 Winter wheat Growth status Hyperspectrum PCA PLSR
  • 引文网络
  • 相关文献

参考文献2

二级参考文献50

共引文献125

同被引文献274

引证文献11

二级引证文献55

;
使用帮助 返回顶部