期刊文献+

对称凸函数和弱对称凸函数的Hermite-Hadamard型不等式 被引量:6

On Hermite-Hadamard Type Inequalities for Symmetrized Convex Functions and Weak Symmetrized Convex Functions
下载PDF
导出
摘要 利用凸函数的性质和Hermite-Hadamard不等式,得到对称凸函数和弱对称凸函数的Hermite-Hadamard型不等式,给出了已有对称凸函数和弱对称凸函数Hermite-Hadamard型不等式的加细. By using the properties of convex functions and Hermite-Hadamard inequality,we have obtained Hermite-Hadamard type inequalities of weak symmetrized convex functions and symmetrized convex functions,and given the refinement of the Hermite-Hadamard type inequalities of weak symmetrized convex functions and symmetrized convex functions.
作者 曾志红 时统业 钟建华 陈强 ZENG Zhi-hong;SHI Tong-ye;ZHONG Jian-hua;CHEN Qiang(Editorial Department of Journal,Guangdong University of Education,Guangzhou 510303,China;Department of Information,PLA Naval Command College,Nanjing 211800,China;Department of Mathematics,Guangdong University of Education,Guangzhou 510303,China;Department of Computer Science,Guangdong University of Education,Guangzhou 510303,China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期24-30,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61370186 61640222) 广东省省级科技计划项目(2014A010103040) 广州市科技计划项目(201604010049) 广东第二师范学院教授博士专项科研经费资助项目(2015ARF24)
关键词 对称凸函数 弱对称凸函数 凸函数 Hermite-Hadamard型不等式 symmetrized convex function weak symmetrized convex function convex function Hermite-Hadamard type inequality
  • 相关文献

参考文献7

二级参考文献39

  • 1于永新,刘证.凸函数的几个Hadamard型不等式[J].数学的实践与认识,2005,35(1):201-207. 被引量:4
  • 2吴善和.rP—凸函数与琴生型不等式[J].数学的实践与认识,2005,35(3):220-228. 被引量:21
  • 3唐万梅,杨新民.强预不变凸函数的充要条件(英文)[J].运筹学学报,2006,10(3):50-58. 被引量:12
  • 4唐万梅,刘茜,杨新民.强预拟不变凸函数的充要条件(英文)[J].运筹学学报,2007,11(3):21-30. 被引量:7
  • 5冯慈璜.关于凸函数的Hadamard不等式.数学年刊:A辑,1985,6(4):443-446.
  • 6Mitrinovic D S, Lackovic I B. Hermite and convexity[J]. Aequationes Mathematicae, 1985,28 (2): 229-232.
  • 7Dragomir S S. Two mappings in connection to Hadamar d's inequalities [J]. Math, Anal Appl, 1992,167 (1): 49-56.
  • 8Gill P M, Pearce C E M, Pecaric J E. Hadamar d's inequality for r-convex functions[J]. Math Anal Appl, 1997, 215(3):461-470.
  • 9Pachpatte B G. A note on integral inequalities involving two log-convex functions[J]. Math Ineq and Appl, 2004, 7(4) :511-515.
  • 10Yang G S, Tseng K L. On certain integral inequalities related to Hermited-Hadamard inequalities[J]. Math Anal Appl, 1999,239 (2): 180-187.

共引文献67

同被引文献34

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部