期刊文献+

一种自动确定特征向量与类别数目的谱聚类算法 被引量:3

A spectral clustering algorithm for automatic determination of eigenvectors and category quantity
下载PDF
导出
摘要 目前大多数应用于复杂网络社团划分的算法都不能自动确定类别数目.为了解决该问题,在计算出复杂网络的拉普拉斯矩阵特征值之后,利用特征值间隔提出一种自动确定特征向量与类别数目的谱聚类算法.该算法通过数据构造拉普拉斯矩阵,得到一系列特征值,再利用特征值差值确定聚类数目以及特征向量,然后利用K-means算法对特征向量进行处理最终得到社团划分结果.用MATLAB软件对常用网络进行测试,实验结果表明,该算法对复杂网络社团的划分具有较好的分类准确性. Currently,most algorithms for community partition in complex network can not automatically determine the category quantity.In order to resolve this problem,a spectral clustering algorithm for automatic determination of eigenvector and category quantity is proposed by using the eigenvalue gap,which is obtained by computing the Laplacian eigenvalue of the complex network.In this algorithm,the Laplacian matrix is constructed by using the data to obtain a series of eigenvalues and determine the category and the Laplacian characteristic quantity and eigenvectors by using the difference of the eigenvalues.Then the K-means algorithm is used to process the eigenvectors and,finally,the result of community division is obtained.Some common networks are tested with software Matlab and the experimental result shows that this algorithm will have a better classification accuracy for the division of complex network community
作者 卢鹏丽 才彦姣 LU Peng-li;CAI Yan-jiao(College of Computer and Communication,Lanzhou Univ.of Tech.,Lanzhou 730050,China)
出处 《兰州理工大学学报》 CAS 北大核心 2018年第2期90-94,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(11361033) 甘肃省自然科学基金(1212RJZA029)
关键词 谱聚类 特征间隔 向量选择 拉普拉斯矩阵 聚类数目 spectral clustering eigenvalue gap vector selection Laplacian matrix cluster quantity
  • 相关文献

参考文献10

二级参考文献261

  • 1李瑞,邱玉辉.基于离散点的蚁群聚类算法的研究[J].计算机科学,2005,32(6):111-113. 被引量:4
  • 2KONG Wan-zeng,ZHU Shan-an.Multi-face detection based on downsampling and modified subtractive clustering for color images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):72-78. 被引量:10
  • 3田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 4FiEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98) :298-305.
  • 5LUXBURG von U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4) :395-416.
  • 6NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[ C ]//Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2002.
  • 7SHI J, MALIK J. Normalized cuts and image segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
  • 8KANNAN R, VEMPALA S, VETFA A. On clusterings-good, bad, and spectral[C]//Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science. [ S. l. ]: IEEE Press, 2000.
  • 9HUANG L, YAN D, JORDAN M. Spectral clustering with perturbed data[ C]// Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2008: 705- 712.
  • 10CHI Y, SONG X, ZHOU D. Evolutionary spectral clustering by incorporating temporal smoothness[ C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California: ACM Press, 2007: 153-162.

共引文献407

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部