期刊文献+

基于动态分级和邻域反向学习的改进粒子群算法 被引量:2

An improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning
下载PDF
导出
摘要 针对粒子群算法容易陷入局部最优解的问题,提出了一种基于动态分级和邻域反向学习的改进粒子群算法.该算法通过构建动态分级机制,将种群中的粒子动态地划分成3个等级,对不同等级内的粒子采取不同的扰动行为,使得粒子在增强种群多样性的同时保持向全局最优方向进化;采用粒子智能更新方式,提高了粒子的搜索能力;引入动态邻域反向学习点建立全局搜索策略,促使种群快速寻优.最后,利用多种典型测试函数对该算法进行仿真实验,结果表明,与其他几种优化算法相比,本算法具有较好的收敛性和稳定性. In order to solve the problem that the particle swarm optimization algorithm is likely to fall into local optimum,an improved particle swarm algorithm based on dynamic segmentation and neighborhood reverse learning(DSNRPSO)is proposed.By setting up a dynamic segmentation mechanism,the algorithm divides the particles in the population into three grades,then employs different perturbation strategies for the particles in different grades,so that the particles maintain the evolution to the global optimal direction while the diversity of the population is enhanced.Furthermore,it adopts the method of particle intelligent updating to promote the search ability of particles,and introduces the dynamic neighborhood reverse point enabling a global search to improve the particle searching speed.The preliminary results show that the proposed algorithm has better convergence and stability than several other kinds of optimization algorithms.
作者 任燕芝 REN Yanzhi(School of Mathematics and Statistics,Xidian University,Xi an 710126,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期261-271,共11页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(61373174)
关键词 粒子群算法 动态分级机制 邻域反向学习 全局搜索策略 particle swarm algorithm dynamic segmentation mechanism neighborhood reverse learning global search strategy
  • 相关文献

参考文献2

二级参考文献48

  • 1江金龙,薛云灿,杨启文.基于遗传算法和直接搜索策略的PID整定研究[J].计算机仿真,2005,22(12):139-142. 被引量:8
  • 2李俊勇,田作华,钱华新.一种改进遗传算法在抽油机节能器中的应用[J].计算机仿真,2006,23(9):172-174. 被引量:3
  • 3欧阳惠斌,阳武娇.PID参数整定法的仿真[J].计算机仿真,2007,24(7):323-325. 被引量:22
  • 4Dai Chaohua, Zhu Yunfang and Chen Weirong. Seeker optimiza- tion algorithm [ C ]. In : Proc. 2006 Inter. Conf. Computational Intelligence and Security, Guangzhou, China, IEEE Press, 2006, 1 : 225-229.
  • 5J Kennedy, R Eberhart. Particle Swarm Optimization [ C ]. Proc. /EEE International Conference on Neural Networks, IV. Piscat- away, NJ IEEE Service Center, 1995: 1942-1948.
  • 6Y Shi, R C Eberhart ( ). "Empirical study of particle swarm Opimization[C]. In: Proc. IEEE Int. Conf. Evolutionary Com- putation 3, 1999 : 101 - 106.
  • 7F Saiton. Image Contrast Enhancement Using Genetic Algorithm [ C ]. Proceedings of IEEE SMC' 99, Tokyo, Japan, 1999 : 899- 904.
  • 8Zhou A, Qu B, Li H. Multiobjective evolutionary algorithms: A survey of the state of the art [J]. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
  • 9He Z, Yen G, Zhang J. Fuzzy based Pareto optimality for many-objective evolutionary algorithms [J]. IEEE Trans on Evolutionary Computation, 2014, 18(2): 269-288.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm= NSGA-lI [J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.

共引文献91

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部