期刊文献+

基于并行蚁群算法的无人机协同任务/航迹规划应用研究 被引量:5

Research of UAV Cooperative Task/Track Planning Based on Parallel Ant Colony Algorithm
下载PDF
导出
摘要 无人机协同任务/航迹规划问题具有多类复杂的约束条件,针对该问题本文提出并行蚁群算法的求解思路。首先采用蚁群算法构造无人机航迹的解空间,然后对解空间提出基于整数编码的遗传算法,对参与作战的无人机、目标任务、可选航迹进行编码,来提高解空间的求解效率。本文以无人机的SEAD任务为想定,对单任务进行了仿真实验。结果表明,并行蚁群算法可以有效地解决无人机协同任务/航迹规划问题,满足各类约束条件,提高问题解的可行性。 The cooperative task/track planning problem of UAV has many complex constraints.In this paper,the solution of parallel ant colony algorithm is proposed.Firstly,solution space of UAV track is constructed by ant colony algorithm.Then,the integer coding based genetic algorithm is proposed for the solution space,coding the UAV,the target task and the alternative track to improve the efficiency of the solution.The SEAD task of unmanned aerial vehicle(UAV)is determined for simulating the single task in this paper.The experimental results show that the parallel ant colony algorithm can effectively solve the UAV cooperative task/track planning problem,satisfy all kinds of constraints and improve the feasibility of the problem solution.
作者 吴蕊 WU Rui
出处 《现代导航》 2018年第2期134-138,118,共6页 Modern Navigation
关键词 无人机 约束条件 蚁群优化 分工机制 UAV Constraint Condition ACO Division of Labor Mechanism
  • 相关文献

参考文献2

二级参考文献15

  • 1樊长虹,陈卫东,席裕庚.未知环境下移动机器人安全路径规划的一种神经网络方法[J].自动化学报,2004,30(6):816-823. 被引量:11
  • 2Sabi J Asseo.Terrain following/terrain avoidance path optimization using the method of steepest descent[A].NAECON[C].1988.
  • 3Denton R V,M itchell J S.Demonstration of an innovative technique for terrain following/ errain avoidance-the dynapath algo rithm[A].NA ECON[C].1985.
  • 4Shima T, Rasmussen S J, Sparks A G. Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J]. Computers & Operations Research, 2006, 33(11): 3252-3269.
  • 5Secrest B R. Traveling salesman problem for surveillance mission using particel swarm optimization[D]. Ohio: Air Force Institute of Technology, 2003.
  • 6O'Rourke K P, Bailey T G, Hill R, et al. Dynamic routing of unmanned aerial vehicles using reactive tabu search[J]. Military Operations Research Journal, 2001(6): 5-30.
  • 7Alighanbari M. Task assignment algorithms for teams of UAVs in dynamic environments[D]. Massachusetts: Massachusetts Institute of Technology, 2004.
  • 8Harder R W. A Java universal vehicle router in support of routing unmanned aerial vehicles air missions[D]. Ohio: Air Force Institute of Technology, 2000.
  • 9Kevin P O. Dynamic unmanned aerial vehicle (UAV) routing with a Java-encoded reactive tabu search metaheuristic[D]. Ohio: Air Force Institute of Technology, 1999.
  • 10Brown D T. Routing unmanned aerial vehicles while considering general restricted operating zones[D]. Ohio Air Force Institute of Technology, 2001.

共引文献72

同被引文献43

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部