摘要
讨论下列脉冲分数阶微分方程边值问题解的存在性{~cD_(0^+)~qu(t)=λu(t)+f(t,u(t),(Ku)(t),(Hu)(t)),t∈J',1<q≤2,△u(t_k)=I_k(u(t_k)),△u'(t_k)=I_k~*(u(t_k)),t_k∈(0,T),k=1,...,m,Tu'(0)=-au(0)-bu(T),Tu'(T)=cu(0)+du(T),基于不动点定理,得到了边值问题解的存在性,并且给出例子.
Based on the fixed point theorem,the following boundary value problem for fractional differential equations with impulses is discussed to find the existence of solution to the problem and is exemplified.{~cD_(0^+)~qu(t)=λu(t)+f(t,u(t),(Ku)(t),(Hu)(t)),t∈J',1<q≤2,△u(t_k)=I_k(u(t_k)),△u'(t_k)=I_k~*(u(t_k)),t_k∈(0,T),k=1,...,m,Tu'(0)=-au(0)-bu(T),Tu'(T)=cu(0)+du(T),
作者
马凡婷
周文学
张晨霞
王文倩
Ma Fan-ting;Zhou Wen-xue;Zhang Chen-xia;Wang Wen-qian(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou Gansu 730070)
出处
《河西学院学报》
2018年第2期14-21,88,共9页
Journal of Hexi University
基金
甘肃省自然科学基金(项目编号:1508RJZA060)
关键词
分数阶微分方程
边值问题
不动点定理
Caputo微分
Fractional differential equation
Boundary value problem
Fixed point theorem
Caputo fractional derivative