期刊文献+

基于卷积神经网络的矿工面部表情识别方法 被引量:1

Miners' facial expression recognition method based on convolutional neural network
下载PDF
导出
摘要 针对传统的矿工面部表情识别方法识别率较低、算法复杂等问题,以卷积神经网络为基础,结合支持向量机算法中的非线性映射函数,提出了基于卷积神经网络的矿工面部表情识别方法。卷积神经网络采用权值共享的策略,运用固定权值直接构造卷积层,并依照匹配生长规则确定网络层次结构。将经过预处理的矿工面部表情图像作为卷积神经网络的测试集和训练集,使用支持向量机对表征矿工面部表情特征的神经元进行分类,从而实现对矿工面部表情的分类识别。实验结果表明,该方法对矿工面部表情的识别率达到90.71%,能够满足实际应用需要。 In view of problems of low recognition rate and complex algorithm of traditional miner's facial expression recognition methods,based on convolutional neural network and combining with nonlinear mapping function in support vector machine algorithm,a miners'facial expression recognition method based on convolutional neural network was proposed.The convolutional neural network adopts sharing weights strategy,constructs convolutional layer directly with fixed weights,and determine network hierarchy according to matching growth rules.Preprocessed miner's facial expression images are used as test set and training sets of the convolutional neural network.Supportive vector machine is used to classify neurons that represent miner's facial expression features,so as to realize classification and recognition of miner's facial expressions.The experimental results show that the recognition rate of miner's facial expression of the proposed method reaches 90.71%,which can meet the practical application needs.
作者 杜云 张璐璐 潘涛 DU Yun;ZHANG Lulu;PAN Tao(School of Electrical Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China;Shenhua Information Technology Co.,Ltd.,Beijing 100011,China)
出处 《工矿自动化》 北大核心 2018年第5期95-100,共6页 Journal Of Mine Automation
基金 国家重点研发计划项目(2016YFC0801800)
关键词 矿工面部表情识别 卷积神经网络 支持向量机 权值共享策略 匹配生长规则 miner's facial expression recognition convolutional neural network support vector machine weight sharing strategy matching growth rule
  • 相关文献

参考文献7

二级参考文献78

  • 1Aleksic Petar S, Katsaggelos Aggelos K. Automatic facial expression recognition using facial animation parameters and muhistream HMMs [ J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1):3-11.
  • 2Michael J L, Julien Budynek, kamatsu Shigeru A. automatic classification of single facial images [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (12): 1357 - 1362.
  • 3Ma L, Xiao Y, Khorasani K, et al. A new facial expression recognition technique using 2D DCT and k-means algorithm[A]. In: Proceedings of International Conference on Image Processing [ C ] , Singapore ,2004,2,1269 - 1272.
  • 4Kirby M, Sirovieh L. Application of the Karhunen-Loeve procedure for the characterization of human faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) : 103 - 108.
  • 5Duda R, Hart P, Stork D. Pattern Classification (second edition) [ M ]. New York : Wiley-lnterscience, 2000 : 114 - 139.
  • 6Zuo M J, Lin J, Fan X. Feature separation using ICA for a one- dimensional time series and its application in fault detection [ J ]. Journal of Sound and Vibration, 2005, 287 (3) :614 - 624.
  • 7Fellenz W A, Taylor J G, Tsapatsoulis N, et al. Comparing templatebased, feature-based and supervised classification of facial expressions form static images [ A ]. In: Proceedings of the 3rd International Muhiconference on Circuits, Systems ( IMACS), Communications and Computers[C], Athens, Greece, 1999:5331 -5336.
  • 8Chuang Chao-fa, Shih Frank Y. Recognizing facial action units independent component analysis and support vector machine [ J ]. Pattern Recognition, 2006,39 ( 9 ) : 1795 - 1795.
  • 9Wang Y, Ai H, Wu B, et al. Real time facial expression recognition with adaboost [ A ]. In: Proceedings of 17th IEEE International Conference on Pattern Recognition [ C ], Cambridge, UK, 2004,3 : 926 - 929.
  • 10Jing X Y, Tang Y Y, Zhang D. A Fourier-LDA approach for image recognition [ J ]. Pattern Recognition, 2005, 38(2) : 453 - 457.

共引文献208

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部