期刊文献+

模态桥传递学习方法在医学图像分类中的应用

下载PDF
导出
摘要 为减轻医疗领域中标签数据不足的问题。本文提出了一种基于转移学习的医疗图像分类的新方法。提出了一种桥梁数据库与目标数据库采用相同的医学成像采集方式的模式桥传输学习方法,通过学习从源到桥和从桥到目标的投影函数,可以减轻源(例如自然图像)和目标(例如X射线图像)之间的区域差异。实验结果表明,与各种传输学习方法相比,所提出的方法即使对于少量标记的目标医学图像也能够实现高分类性能。 To alleviate the problem of insufficient label data in medical field.In this paper,a new method of medical image classification based on transfer learning is proposed.A model bridge transmission learning method is proposed in which the bridge database and the target database adopt the same medical imaging acquisition mode.By learning the projection functions from the source to the bridge and from the bridge to the target,the regional differences between the source(such as the natural image)and the target(such as X ray images)can be reduced.The experimental results show that,compared with various transmission learning methods,the proposed method can achieve high classification performance even for a small number of labeled target medical images.
作者 杨舜尧 YANG Shun-yao
出处 《信息技术与信息化》 2018年第4期121-124,共4页 Information Technology and Informatization
关键词 转移学习 医学图像 标注数据 领域差异 transfer-learning medical image data label domain difference
  • 相关文献

参考文献2

二级参考文献28

  • 1王岩,刘茂华,党永超.小地区GPS高程拟合的方法研究与实施[J].测绘通报,2012(S1):66-68. 被引量:5
  • 2李景卫,杨荫奎,高建,周光永,李斌.GPS高程拟合中多面函数及二次曲面函数的比较与分析[J].山东冶金,2006,28(3):42-43. 被引量:26
  • 3Kirby M, Sirovich L. Application of the Karhunen-Loeve procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
  • 4Park S W, Savvides M. A multifactor extension of linear discriminant analysis for face recognition under varying pose and illumination [J]. EURASIP Journal on Advances in Signal Processing, 2010: 6-16.
  • 5Harandi M T, Ahmadabadi M N, Araabi B N. Optimal local basis: a reinforcement learning approach for face recognition [J]. International Journal of Computer Vision, 2009, 81(2): 191-204.
  • 6Sugiyama M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis [J]. The Journal of Machine Learning Research, 2007, 8: 1027-1061.
  • 7Vural V, Fung G, Krishnapuram B. Using local dependencies within batches to improve large margin classifiers [J]. The Journal of Machine Learning Research, 2009, 10: 183-206.
  • 8Liu Z Y, Chiu K C, Xu L. Improved system for object detection and star/galaxy classification via local subspace analysis [J]. Neural Networks, 2003, 16(3): 437-451.
  • 9Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 10Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部