期刊文献+

移动医疗中个性化l-多样性匿名隐私保护模型 被引量:5

Anonymous Privacy Protection Model with Individual l-Diversity in Mobile Health
下载PDF
导出
摘要 随着移动医疗的飞速发展,医疗机构在共享个人医疗数据的同时也存在着隐私泄漏的隐患。基于k-匿名和l-多样性模型,提出利用个性化熵l-多样性隐私保护模型来细粒度地保护用户的隐私,通过区分强弱敏感属性值来提高对敏感属性的约束,降低敏感信息及强信息的泄漏概率,从而达到医疗数据共享安全。通过数据分析及实验结果表明,该方法在提高数据精度的同时可以减少执行时间,而且能提高服务质量,比既有的方案更有效。 With the rapid development of mobile health care,all kinds of medical institutions share personal medical data,but it still has the risk of privacy leak.This paper proposes a personalized entropy privacy protection model to protect the users??privacy with fine granularity based on k-anonymity and l-diversity model.To facilitate medical data sharing security,this model can reduce the leakage probabilities of sensitive information and medical intensive information by distinguishing the strong and weak sensitive attribute values to improve the sense of constraints.The experimental results show that the proposed method can not only enhance the accuracy of the data,but also reduce the execution time.In addition,it also can improve the quality of services and is more effective than existing methods.
作者 李文 黄丽韶 罗恩韬 LI Wen;HUANG Lishao;LUO Entao(School of Electronics and Information Engineering,Hunan University of Science and Engineering,Yongzhou,Hunan 425199,China;School of Information Science and Engineering,Central South University,Changsha 410083,China)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第5期761-768,共8页 Journal of Frontiers of Computer Science and Technology
基金 The National Natural Science Foundation of China under Grant No.61502163(国家自然科学基金) the Research Program of the Education Department of Hunan Province under Grant No.2015C0589(湖南省教育厅科研项目) the Fundamental Research Funds for the Central Universities of Centr
关键词 医疗信息 数据发布 隐私保护 K-匿名 ι-多样性 medical information data publishing privacy preservation k-anonymity l-diversity
  • 相关文献

参考文献6

二级参考文献63

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Sweeney L.K-anonymity:A model for protecting privacy[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):557-570.
  • 3Sweeney L.Achieving k-anonymity privacy protection using generalization and suppression[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):571-588.
  • 4Sweeney L.Guaranteeing anonymity when sharing medical data:The data fly system[C] //Proceedings of the 1997AMIA Annual Fall Symposium,1997,4:51-55.
  • 5LeFevre K,DeWitt D J,Ramakrishnan R.Incognito:Efficient full-domain k-anonymity[C] //Proc of 24th ACM SIGMOD International Conference on Management of Data,Baltimore,Maryland,USA,2005:49-60.
  • 6LeFevre K,De Witt D J,Ramakrishnan R.Mondrian multidimensional k-anonymity[C] //Proceedings of the 22nd International Conference on Data Engineering(ICDE),Atlanta,Georgia,USA,2006:25-35.
  • 7Liu Xiangyu,Yang Xiaochun,Yu Ge.A respresentative classes bassed privacy preserving data publishing approach with high precision[J].Journal of Computer Science,2005,32(7):368-373.
  • 8Machanavajjhala A,Gehrke J,Kifer D,et al.l-diversity:Privacy beyond k-anonymity[C] //Proceedings of the 22nd International Conference on Data Engineering(ICDE),Atlanta,Georgia,USA,2006.
  • 9Hyoungmin P,Kyuseok S.Approximate algorithms for k-anonymity[C] //Proceedings of the ACM SIGMOD International Conference on Management of Data,Beijing,China,2007:67-78.
  • 10Xiao X,Tao Y,Chen M.Optimal random perturbation at multiple privacy levels[C] //Proceedings of the International Conference on Very Large Data Bases,Lyon,France,2009,2(1):814-825.

共引文献161

同被引文献52

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部