期刊文献+

多重代价多粒度决策粗糙集模型研究 被引量:2

Multi-Cost Based Multi-Granulation Decision-Theoretic Rough Set Model
下载PDF
导出
摘要 决策粗糙集和多粒度粗糙集是两种重要的数据处理机制。在对多重代价决策粗糙集模型和多粒度粗糙集模型的研究基础上,通过综合考虑多重代价矩阵和多粒度思想,将权重均值代价策略引入决策粗糙集模型中,提出了一种基于权重多重代价的多粒度决策粗糙集模型。在不完备信息系统中,分析了悲观代价决策粗糙集、乐观代价决策粗糙集和权重多重代价多粒度决策粗糙集模型,并给出了以上各种模型的决策代价总代价计算公式。以权重多重代价悲观多粒度决策粗糙集模型为例,讨论了该模型下随着粒度的变化其正域的变化情况,并给出了一种基于代价最小化的粒度约简方法。该模型更好地结合了决策粗糙集模型和多粒度粗糙集模型,可从多角度分析解决决策粗糙集模型中的相关问题。 Decision-theoretic rough sets and multi-granulation rough sets are two important mechanisms of data processing.On the basis of decision-theoretic rough sets based on multi-cost and multi-granulation rough sets,by considering multi-cost matrix and multi-granularity thought,this paper introduces a weighted mean-cost strategy into decision-theoretic rough set models,and proposes a multi-granulation decision-theoretic rough set model based on weighted multi-cost.In the incomplete information system,this paper discusses the pessimistic cost decision-theretic rough sets,optimistic cost decision-theoretic rough sets and weighted multi-cost multi-granulation decision-theoretic rough set models respectively,and describes the formulas of the whole decision costs for the above models.Finally,taking the pessimistic multi-granulation decision-theoretic rough set model based on weighted multi-cost for example,this paper analyzes the monotonicity of the decision positive region with respect to knowledge granularity sets,and proposes a definition of the granularity reduction based on the minimum decision cost.The model combines the decision-theoretic rough set model and multi-granulation rough set model with a more suitable method,which can solve the problems from multiple perspectives in the decision-theoretic rough set model.
作者 陈家俊 徐华丽 魏赟 CHEN Jiajun;XU Huali;WEI Yun(College of Electronics and Information Engineering,West Anhui University,Lu..an,Anhui 237012,China;College of Electronics and Information Engineering,Tongji University,Shanghai 201804,China;Key Laboratory of Embedded System and Service Computing(Tongji University),Ministry of Education,Shanghai 201804,China;College of Railway Technology,Lanzhou Jiaotong University,Lanzhou 730000,China)
出处 《计算机科学与探索》 CSCD 北大核心 2018年第5期839-850,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61673301 安徽省优秀青年人才支持计划项目No.gxyq2017056 安徽省高校自然科学研究重点项目No.KJ2014A277 甘肃省高等学校科研项目No.2016B-031~~
关键词 决策粗糙集 多粒度粗糙集 决策代价 代价认可度 decision-theoretic rough set multi-granulation rough set decision cost reliability of cost
  • 相关文献

参考文献9

二级参考文献139

  • 1赵文清,朱永利,高伟华.一个基于决策粗糙集理论的信息过滤模型[J].计算机工程与应用,2007,43(7):185-187. 被引量:15
  • 2杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 3Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic, 1991.
  • 4Yao YY, Zhao Y. Attribute reduction in decision-theoretic rough set models. Information Sciences, 2008,178(17):3356-3373. [doi: 10.1016/j.ins.2008.05.010].
  • 5Shen Q, Jensen R. Rough sets, their extensions and applications, Int'l Journal of Automation and Computing, 2007,4(3):217-228. [doi: I0.1007/sl 1633-007-0217-y].
  • 6Wu WZ, Leung Y, Shao MW. Generalized fuzzy rough approximation operators determined by fuzzy implicators. Int'l Journal of Approximation Reasoning, 2013,54(9):1388-1409. Idol: 10.1016/j.ijar.2013.05.004].
  • 7Yao YY, Wong SKM, Lingras P. A decision-theoretic rough set model. In: Ras ZW, Zemankova M, Emrich ML, eds. Proc. of the Methodologies for Intelligent Systems. New York: North-Holland, 1990. 17-24.
  • 8Pawlak Z, Wong SKM, Ziarko W. Rough sets: Probahilistic versus deterministic approach. Int'l Journal of Man-Machine Studies, 1988,29(1):81-95. [doi: 10.1016/S0020-7373(88)80032-4].
  • 9Ziarko W. Variable precision rough set model. Journal of Computer and System Science, 1993,46(1 ):39-59. [doi: 10.1016/0022-00 00(93)90048-2].
  • 10Slezak D, Ziarko W. Attribute reduction in the Bayesian version of variable precision rough set model. Electronic Notes in Theoretical Computer Science, 2003,82(4):263-273. [doi: 10.1016/S1571-0661(04)80724-2].

共引文献155

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部