期刊文献+

改进的谱聚类算法在图像分割中的应用 被引量:5

Application of Improved Spectral Clustering Algorithm in Image Segmentation
下载PDF
导出
摘要 为了消除传统的谱聚类图像分割算法存在的缺陷,提出一种改进的谱聚类图像分割算法。该算法提出余弦相似性加权矩阵,充分利用图像的纹理信息和空间临近信息构造相似性矩阵。在谱映射过程中,利用Nystriom逼近策略估计相似性矩阵及其主特征向量。最后利用优化的K-means算法与优化的粒子群算法相结合的算法对得到的低维向量子空间进行聚类,避免直接采用K-means算法对初始值敏感,易陷入局部最优的缺点。实验证明该算法在运行时间和分割精度方面较传统谱聚类算法均有明显的提高。 In order to eliminate the defects of traditional spectral clustering image segmentation algorithm,an improved spectral cliustering image segmentation algorithm was proposed,which made full use of tlie image tex-ture information and spatial adjacency information to construct cosine similarity matrix.In the spectral mapping process,the similarity matrix and its main eigenvectors were estimated by using the Nystrom approximation strategy.Finally,a new algorithm combining improved IKmeans and optimized particle swarm optimization algo-rithm was used to cluster the low-dimensional subspace,which avoided the K-means algorithm being sensitive to the initial value and easy to fall into the local optimum.Experimental results showthat the newmethod has obviously beter performance and low computational cost than the traditional spectral clustering algorithm.
作者 王焱 王卉蕾 WANG Yan;WANG Hui-lei(School of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China)
出处 《测控技术》 CSCD 2018年第4期11-15,共5页 Measurement & Control Technology
关键词 谱聚类 余弦相似度 图像纹理 Nyst0m逼近策略 粒子群算法 spectral clustering cosine similarity image texture Nystrom approximation strategy particle swarm optimization algorithm
  • 相关文献

参考文献3

二级参考文献55

  • 1王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 2章毓晋.图像分割[M].北京:科学出版社,2001..
  • 3Jain A, Murty M, Flynn P. Data clustering.. A Review[J]. ACM Computing Surveys, 1999,31 (3) : 264-323.
  • 4Fiedler M. Algebraic connectivity of graphs. Czech, Math. J. , 1973,23: 298-305.
  • 5Malik J,Belongie S,Leung T, et al. Contour and texture analysis for image segmentation In Perceptual Organization for Artificial Vision Systems. Kluwer, 2000.
  • 6Weiss Y. Segmentation using eigenvectors: A unified view//International Conference on Computer Vision 1999.
  • 7Shi J,Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) : 888-905.
  • 8Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993, 15(11):1101-1113.
  • 9Hagen L, Kahng A 13. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 1992,11 (9) : 1074-1085.
  • 10Sarkar S, Soundararajan P. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22(5) : 504- 525.

共引文献194

同被引文献44

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部