摘要
为了消除传统的谱聚类图像分割算法存在的缺陷,提出一种改进的谱聚类图像分割算法。该算法提出余弦相似性加权矩阵,充分利用图像的纹理信息和空间临近信息构造相似性矩阵。在谱映射过程中,利用Nystriom逼近策略估计相似性矩阵及其主特征向量。最后利用优化的K-means算法与优化的粒子群算法相结合的算法对得到的低维向量子空间进行聚类,避免直接采用K-means算法对初始值敏感,易陷入局部最优的缺点。实验证明该算法在运行时间和分割精度方面较传统谱聚类算法均有明显的提高。
In order to eliminate the defects of traditional spectral clustering image segmentation algorithm,an improved spectral cliustering image segmentation algorithm was proposed,which made full use of tlie image tex-ture information and spatial adjacency information to construct cosine similarity matrix.In the spectral mapping process,the similarity matrix and its main eigenvectors were estimated by using the Nystrom approximation strategy.Finally,a new algorithm combining improved IKmeans and optimized particle swarm optimization algo-rithm was used to cluster the low-dimensional subspace,which avoided the K-means algorithm being sensitive to the initial value and easy to fall into the local optimum.Experimental results showthat the newmethod has obviously beter performance and low computational cost than the traditional spectral clustering algorithm.
作者
王焱
王卉蕾
WANG Yan;WANG Hui-lei(School of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China)
出处
《测控技术》
CSCD
2018年第4期11-15,共5页
Measurement & Control Technology
关键词
谱聚类
余弦相似度
图像纹理
Nyst0m逼近策略
粒子群算法
spectral clustering
cosine similarity
image texture
Nystrom approximation strategy
particle swarm optimization algorithm