期刊文献+

多目标时间依赖团队定向问题

Multi-Objective Time-Dependent Team Orienteering Problem
下载PDF
导出
摘要 团队定向问题是车辆路径问题的一个重要衍生问题,被广泛应用于旅游路线规划等现实问题中。当前团队定向问题并没有同时考虑路况的时间依赖和不同的节点可能存在多种不同的收益。针对这个问题,首先提出多目标时间依赖团队定向问题,同时考虑时间对路况的影响和节点的多种不同收益。然后运用多目标模拟退火算法进行求解。最后,在现有多目标时间依赖定向问题标准数据集的基础上构造多目标时间依赖团队定向问题数据集并进行实验。实验结果表明多目标模拟退火算法能有效求解多目标时间依赖团队定向问题,所得的Pareto解集有较好的多样性和收敛性。 The team orienteering problem is an important variant of the vehicle routing problem,which is widely used in real-world application areas such as tourist trip design.However,the current research on the team orienteering problem does not consider time-dependent travel and multi-profits of the nodes together.Be aimed at these problems,multi-objective timedependent team orienteering problem is proposed firstly,which considers time-dependent travel and multi-profits of the nodes simultaneously.Then,the multi-objective simulated annealing is used to solve this problem.Finally,datasets for multi-objective time-dependent team orienteering problem are generated by modifying benchmark datasets of time-dependent orienteering problem.The experimental results show that,the multi-objective simulated annealing can solve the multi-objective timedependent team orienteering problem effectively.The obtained Pareto sets have good diversity and convergence.
作者 毕志升 钱融 BI Zhi-sheng;QIAN Rong(School of Basic Science,Guangzhou Medical University,Guangzhou Guangdong,511436)
出处 《新型工业化》 2017年第5期8-14,共7页 The Journal of New Industrialization
基金 国家自然科学基金(61603106) 广州市市属高校科研项目(1201630320) 广州市教育科学规划课题(1201553242) 广州医科大学科学科研项目(L135042)
关键词 车辆路径问题 时间依赖 团队定向问题 多目标优化 Vehicle routing problem Time-dependent Team orienteering problem Multi-objective optimization
  • 相关文献

参考文献2

二级参考文献61

  • 1刘丽兰,俞涛,施战备.制造网格中基于服务质量的资源调度研究[J].计算机集成制造系统,2005,11(4):475-480. 被引量:21
  • 2谷清范,吴介一,张飒兵,李海峰.基于遗传算法的多性能目标网格服务调度算法[J].信息与控制,2005,34(3):279-285. 被引量:4
  • 3张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 4郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 5Deb K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester, UK: John Wiley : Sons, 2001.
  • 6Coetlo C A C, van Veldhuizen D A, Lamont G B. Evolutionary Algorithms for Solving Multi-Objective Problems. New York: Kluwer Academic Publishers, 2002.
  • 7Zhou A, Qu B, Li H, et al. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1(1): 32-49.
  • 8Schaffer J D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms[Ph. D. dissertation]. Vanderbilt University, Nashville, USA, 1984.
  • 9Guo G, Yin C, Yan T, Li Wu. Nearest neighbor classifica- tion of Pareto dominance in multi-objective optimization// Proceedings of the IEEE 5th International Conference on Advanced Computational Intelligence. Nanjing, China, 2012:328-331.
  • 10Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 1995, 3(1) : 1-16.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部