摘要
粗糙集预测旨在从决策信息系统中学习规则从而预测新样本的标签.文中利用置信度刻画规则的可信程度,从而设计基于粗糙集的置信度预测算法,称为置信度算法.该算法可以对新样本分配与其匹配之后置信度最高的标签.泛化误差作为衡量算法有效性的指标之一,对其界的估计一直是构造学习模型的基础.利用算法稳定性概念刻画了置信度算法的泛化界,结果表明泛化能力由样本个数以及稳定性参数决定:样本数目越大,规则数目越多且稳定性参数越小;泛化误差界越小,经验误差越逼近泛化误差.
Rough set-based prediction aims to construct an algorithm to extract decision rules from decision systems and then assign the corresponding decision labels for new samples.To show the efficiency of prediction algorithms,it needs to measure the stability and generalization performance of algorithms.In this paper the generalization performance of confidence algorithm in terms of algorithmic stability is analyzed,which shows that the bound of generalization error is related to the number of rules,and stability parameter.The bound is decreasing as the increase of samples and rules,and the decrease of stability parameters.
作者
张晓霞
陈德刚
ZHANG Xiao-xia;CHEN De-gang(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;Department of Mathematics and Physics,North China Electric Power University,Beijing 102206,China)
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2018年第3期11-18,共8页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(71471060)
华北电力大学中央高校科研基金资助项目(2015xs71)
关键词
粗糙集预测
置信度算法
泛化误差
经验误差
泛化界
rough set-based prediction
confidence algorithm
generalization error
empirical error
generalization error bound