期刊文献+

基于各向异性全变分的迭代滤波算法 被引量:3

An Iterative Image Filter Based on Anisotropic Total Variation
下载PDF
导出
摘要 空间邻近度和像素值相似度的双边滤波(BF)器在滤波时,由于其值域滤波核系数的计算易受到噪声的干扰,在噪声水平较大时,直接使用噪声图像来指导核函数权值计算的方案不可行。为此,提出一种结合各向异性全变分和BF的图像去噪算法,将各向异性全变分算法与BF算法相结合,首先利用各向异性全变分算法对噪声图像进行处理,得到一幅边缘结构信息较为丰富的结果图像,接着将该结果图像作为BF算法的引导图像来指导值域滤波核系数的计算,为保证算法的稳定性,对上述过程进行迭代处理。此外,为提高各向异性全变分算法的计算效率,引入了Split Bregman迭代算法进行加速处理。实验表明,该算法能在较好去噪的同时,保留较多的边缘结构信息。 Spatial proximity and similarity of the pixel values of bilateral filter in the filter based on the calculation of the range of filter kernel coefficient is susceptible to noise interference.When the noise level is high,the direct use of noise image to guide the kernel weight computation program is not feasible.Therefore,in this paper,the anisotropic total variation and bilateral filtering are combined.Firstly,the image is processed by the anisotropic total variation model,and the result image with rich edge structure information is obtained.Then the calculation results of image as a guide bilateral filtering image to guide the range of filter kernel coefficient.In order to ensure the stability of the algorithm,the above process is iterated.In addition,in order to improve the computational efficiency of the anisotropic total variation model,the Split Bregman iterative algorithm is introduced to accelerate the computation.The experimental results show that the proposed algorithm can preserve more edge information while denoising.
作者 芦碧波 王乐蓉 郑艳梅 王永茂 李晓莹 秦钰翔 LU Bibo;WANG Lerong;ZHENG Yanmei;WANG Yongmao;LI Xiaoying;QIN Yuxiang(College of Computer Science and Technology,Henan Polytechnic University,Jiaozuo Henan 454000,China;Guangdong Engineering Research Center for Data Science,Guangzhou Guangdong 510631,China)
出处 《图学学报》 CSCD 北大核心 2018年第2期186-192,共7页 Journal of Graphics
基金 国家自然科学基金项目(U1404103) 河南省教育厅科学技术研究重点项目(14A520029 16A520053) 河南理工大学创新型科研团队项目(T2014-3) 河南理工大学博士基金项目(B2016-40)
关键词 图像去噪 双边滤波 各向异性全变分算法 SplitBregman迭代方法 结构保持能力 image denoising bilateral filter anisotropic total variation Split Bregman iterative method structure preserve capability
  • 相关文献

参考文献3

二级参考文献19

  • 1Ron Kimmel,Michael Elad,Doron Shaked,Renato Keshet,Irwin Sobel. A Variational Framework for Retinex[J] 2003,International Journal of Computer Vision(1):7~23
  • 2Jafar I F, AINa'mneh R A, Darabkh K A. Efficient improve- ments on the BDND filtering algorithm for the removal of high- density impulse noise [J]. IEEE Transactions on Image Proces- sing, 2013,22(3) : 1223-1232.
  • 3Rajwade A, Rangarajan A, Banerjee A. Image denoising using the higher order singular value decomposition [J]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2013,35 (4) :849-862.
  • 4Yu Wei, Franchetti F, Hoe J C, et al. Fast bilateral filtering by adapting block size [C] // Proceedings of IEEE International Conference on Image Processing. Hong Kong, China, 2010: 3281-3284.
  • 5Kang I3, Choi O, Kim J D, et al. Noise reduction in magnetic re- sonance images using adaptive non-local means filtering [J]. Electronics Letters,2013,49(5) :324-326.
  • 6Overton K I,Weymouth T E. A noise reducing reprocessing al- gorithm [C] // Proceedings of IEEE Computer Science Conference on Pattern Recognition and Image Processing. Chicago, USA, 1979 : 498-507.
  • 7Zheng You-Yi, Fu Hong-bo, AuOK C, et ai. Bilateral normal fil- tering for mesh denoising [J]. IEEE Transactions on Visualiza- tion and Computer Graphics,2011,17(10) : 1521-1530.
  • 8Zhang Ke, Lu Jian-Bo,Lafruit G. Cross-based local stereo matc- hing using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19 (7): 1073-1079.
  • 9Guerreiro R F C, Aguiar P M Q. Learning simple texture dis- crimination filters [C]//Proceedings of IEEE International Con- ference on Image Processing. Hong Kong, China, 2010 : 261-264.
  • 10Markus A M, Anjia B, Martin W, et al. Wavelet denoising of multiframe optical coherence tomography data [J]. Biomedical Optics Express, 2012,3 (3) : 572-589.

共引文献173

同被引文献21

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部