期刊文献+

广义重心坐标的递推关系

Recursion on Generalized Barycentric Coordinates
下载PDF
导出
摘要 从线性方程组解空间的角度理解广义重心坐标(GBCs),给出平面重心坐标从n边形到n(10)1边形的递推关系式。将构造重心坐标的问题转化为构造函数的问题,不需考虑坐标函数的几何意义,选取满足约束条件的函数即可构造重心坐标。在推导过程中,n(10)1边形(n≥3)可看作n边形与一顶点的组合,将该顶点用n边形的顶点线性表出,可将n(10)1边形上的重心坐标化为n边形上的齐次坐标(homogeneous coordinates)。为第n(10)1个坐标函数施加一定限制条件,即得到n边形上一组重心坐标。 From the view of the solution space of a system of linear equations,the recursion formula is worked out on generalized barycentric coordinates(GBCs)from n-gons to n?1-gons.Unlike the classical way to construct GBCs,which based on geometric meaning of coordinate functions,a new method is provided to construct GBCs for planar n-gons if a coordinate function is chosen which satisfies constraint condition.To get the recursion formula,since a(n?1)-gons(n≥3)can be seen as a n-gons plus one extra vertex,the extra vertex can be represented by affine linear combination of the vertices of the n-gons.Hence the GBCs in(n?1)-gons can be rewritten by homogeneous coordinates in n-gons.Conditions for the(n?1)th coordinate function are presented to satisfy the requirement of GBCs.
作者 钱毅加 唐烁 王旭辉 QIAN Yijia;TANG Shuo;WANG Xuhui(School of Mathematics,Hefei University of Technology,Hefei Anhui 230009,China)
出处 《图学学报》 CSCD 北大核心 2018年第2期251-255,共5页 Journal of Graphics
关键词 重心坐标 递推式 多边形 barycentric coordinates recursion polygon
  • 相关文献

参考文献2

二级参考文献35

  • 1Wachspress Eugene A Rational Finite Element Basis[M] New York: Academic Press, 1975
  • 2Loop Charles, DeRose Tony. A multisided generalization of Bézier surfacesJ]ACM Transactions on Graphics, 1989, 8(3): 204~234
  • 3Eck Matthias, DeRose Tony, Duchamp Tom, et al. Multiresolution analysis of arbitrary meshes[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, CA, 1995. 173~182
  • 4Floater Michael S. Parametrization and smooth approximation of surface triangulations[J]. Computer Aided Geometric Design, 1997, 14(3): 231~250
  • 5Floater Michael S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19~27
  • 6Meyer Mark, Lee Haeyoung, Barr Alan, et al. Generalized barycentric coordinates on irregular polygons[J]. Journal of Graphics Tools, 2002, 7(1): 13~22
  • 7Warren Joe. Barycentric coordinates for convex polytopes[J]. Advances in Computational Mathematics, 1996, 6(2): 97~108
  • 8Sibson R. A brief description of natural neighbour interpolation[A]In: Barnett V, ed. Proceedings of Interpreting Multivariate Data[C]. Chichester: John Wiley, 1981. 21~36
  • 9Prentice J S C. Range and domain partitioning in piecewise polynomial approximation [J]. Studies in Mathematical Sciences, 2011, 2(2): 67-77.
  • 10Powell M J D. Approximation theory and methods [M]. Cambridge: Cambridge University Press, 1981: 25-30.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部