期刊文献+

改进的流体模拟固体边界处理算法 被引量:2

An Improved Solid Boundary Treatment Algorithm of Fluid Simulation
下载PDF
导出
摘要 流体模拟是计算机图形学的一个重要研究分支,流体的固体边界处理一直是流体模拟的研究重点,光滑粒子流体动力学(SPH)方法中的镜像粒子法是处理固体边界的一个重要方法。镜像粒子法通过靠近边界的流体粒子在边界外动态生成对应的镜像粒子来处理固体边界问题,但随着边界复杂程度的提高,传统的镜像粒子法生成镜像粒子的复杂度也随之提高,模拟效率随之降低。为此,文章对镜像粒子法进行改进,提出一种新的镜像粒子场量求值方法,有效地降低了复杂边界情况下生成镜像粒子的复杂度,且使靠近边界的流体粒子场量更加均匀。仿真实验结果表明,随着流体模拟粒子数的增加以及边界复杂程度的提高,该方法比传统镜像粒子法效率高的优势也更加明显。 Fluid simulation is an important research branch of computer graphics,solid boundary treatment of fluid has always been the focus of fluid simulation,image particle method in smooth particle hydrodynamics is an important method to deal with solid boundary.Image particle method deals with solid boundary problems by dynamically generating corresponding mirror particles outside the boundary by fluid particles near the boundary.However,with the improvement of the complexity of the boundary,the complexity of the traditional mirror particle method to generate the mirror particles is also increased,and the simulation efficiency is reduced.In order to solve the above problem,the mirror particle method is improved in this paper by giving a new technique for calculating values of mirror particle field,which effectively reduces the complexity of the generation of traditional mirror particles with complex boundary conditions,and the field of fluid particles near the boundary is more uniform.A lot of simulation results show that this method becomes more efficient compared with the mirror particle method with the increasement of the number of particles and the complexity of the scene.
作者 朱晓临 殷竞存 汪欢欢 ZHU Xiaolin;YIN Jingcun;WANG Huanhuan(School of Mathematics,Hefei University of Technology,Hefei Anhui 230009,China)
出处 《图学学报》 CSCD 北大核心 2018年第2期263-268,共6页 Journal of Graphics
基金 国家自然科学基金项目(61272024)
关键词 光滑粒子流体动力学方法 流体模拟 固体边界处理 镜像粒子法 复杂场景 smoothed particle hydrodynaimics method fluid simulation solid boundary treatment ghost particle field complex scene
  • 相关文献

参考文献1

二级参考文献23

  • 1柳有权,刘学慧,朱红斌,吴恩华.基于物理的流体模拟动画综述[J].计算机辅助设计与图形学学报,2005,17(12):2581-2589. 被引量:59
  • 2Milller M, Schirm S, Teschner M, et at. Interaction of fluids with deformable solids [J]. Computer Animation and Virtual Worlds, 2004, 15(3/4): 159-171.
  • 3Harada T, Koshizuka S, Kawaguchi Y, Smoothed particle hydrodynamics on GPUs [C] //Proceedings of Computer Graphics International, Washington DCt IEEE Computer Society, 2007:63-70.
  • 4Yang L P, Li S, Hao A M, etal. Realtime two-way coupling of meshless fluids and nonlinear FEM [J], Computer Graphics Forum, 2012, 31(7): 2037-2046.
  • 5Becker M, Tessendorf H, Teschner M. Direct forcing for lagrangian rigid-fluid coupling [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(3), 493-503.
  • 6Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopie flows [J]. Journal of Computational Physics, 2006, 213(2): 844-861.
  • 7Morris J P, Monaghan J J. A switch to reduce SPH viscosity [J]- Journal of Computational Physics, 1997, 136(1): 41-50.
  • 8Seheehter H, Bridson R. Ghost SPH for animating water [J]. ACM Transactions on Graphics, 2012, 31(4): Article No. 61.
  • 9Solenthaler B, Schlifli J, Pajarola R. A unified particle model for fluid-solid interactions [J]. Computer Animation and Virtual Worlds, 2007, 18(1) : 69-82.
  • 10Ihmsen M, Akinci N, Gissler M, et al. Boundary handling and adaptive time-stepping for PCISPH [C] //Proceedings of Workshop on Virtual Reality Interaction and Physical Simulation. Aire-la-Ville: Eurographics Association Press, 2010:79-88.

共引文献7

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部