期刊文献+

一种可靠性驱动的云工作流调度遗传算法 被引量:2

Cloud workflow scheduling genetic algorithm satisfying reliability driven
下载PDF
导出
摘要 为了解决云环境中工作流调度的可靠性问题,提出了一种基于可靠性驱动信誉度模型的工作流调度遗传算法RDR-GA。算法以工作流执行跨度makespan与可靠性最优化为目标,设计了一种基于时间依赖的可靠性驱动信誉度模型,通过该模型可以有效评估资源可靠性。同时,为了寻找遗传最优解,算法设计了新的遗传进化和评估机制,包括:以进化算子对调度解中的任务—资源映射进行遗传进化;以两阶段MAX-MIN策略评估并决定调度解的任务执行序列。仿真实验结果表明,满足可靠性驱动的信誉度算法不仅能够以更精确的信誉度改善工作流应用执行可靠性,而且能够以比同类遗传算法更快的收敛速度得到进化更优解。 In order to solve the reliability problem of workflow scheduling in cloud computing environment,this paper proposed a workflow scheduling genetic algorithm based on reliability-driven reputation model.This algorithm defined the makespan and reliability of workflow scheduling as the optimization objectives,and designed a reliability-driven reputation model based on time dependent.It could effectively evaluate the reliability of a resource by this model.At the same time,to find genetic optimal solution,this algorithm designed a novel evoluation and evaluation mechanism,included:the evolution operators evolved the task-resource mapping of a scheduling solution and the evaluation step determined the task order of solutions by using the two-phase MAX-MIN strategy.The simulation experimental results show that the satisfying reliability-driven reputation algorithm not only can improve the reliability of an workflow application execution with more accurate reputations,but also can provide and evolve to better solutions with a faster convergence speed than another genetic algorithm.
作者 魏秀然 王峰 Wei Xiuran;Wang Feng(College of Information&Management Science,Henan Agricultural University,Zhengzhou 450046,China;College of Software,North China University of Water Resources&Electric Power,Zhengzhou 450045,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第5期1390-1394,1411,共6页 Application Research of Computers
基金 河南省重点科技攻关项目(152102210112) 河南省教育厅科学技术研究重点项目(13A520713)
关键词 云计算 工作流调度 遗传算法 信誉模型 cloud computing workflow scheduling genetic algorithm reputation model
  • 相关文献

参考文献4

二级参考文献47

  • 1景维鹏,吴智博,刘宏伟,董剑.支持优先级约束任务的容错调度算法[J].清华大学学报(自然科学版),2011,51(S1):1440-1444. 被引量:4
  • 2Mell P, Grance T. The NIST definition of cloud computing (draft)[S]. NIST Special Publication 800-145, 2011.
  • 3Abrishami S, Naghibzadeh M, Epema D H J. Deadline-con strained workflow scheduling algorithms for infrastructure as a service clouds[J]. Future Generation Computer Systems, 2013, 29(1):158-169.
  • 4Liu K,Jin H,Chen J, et al. A compromised-time-cost schedu ling algorithm in swindew-c for instance intensive cost-con- strained workflows on a cloud computing platform. Inter- national Journal of High Performance Computing Applica tions, 2010, 24(4):445-456.
  • 5Rao J, Wei Y,Gong J, et al. QoS guarantees and service dif ferentiation for dynamic cloud applications[J]. IEEE Trans actions on Network and Service Management, 2013, 10(1) :43-55.
  • 6Wu Z,Liu X,Ni Z,et al. A market oriented hierarchical schedu ling strategy in cloud workflow systems[J]. The Journal of Supercomputing, 2013, 63(1): 256-293.
  • 7Ergu D,Kou G,Peng Y,et al. The analytic hierarchy process: Task scheduling and resource allocation in cloud computing environment. The Journal of Supercomputing, 2013,64 (3),1-14.
  • 8Hamlen K, Kantarcioglu M, Khan L, et al. Security issues for cloud computing. International Journal of Information Security and Privacy (IJISP), 2010, 4(2) :36-48.
  • 9Song S, Hwang K, Kwok Y K. Risk resilient heuristics and genetic algorithms for security-assured grid job scheduling [J]. IEEE Transactions on Computers, 2006, 55(6):703- 719.
  • 10Kennedy J, Eberhart R. Particle swarm optimization[C]// Proc of IEEE International Conference on Neural Networks, 1995:1942-1948.

共引文献28

同被引文献17

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部