摘要
针对现实中同一实体存在不同表象的问题,提出一种基于D-S证据理论特征融合的同义实体识别方法。以搜索引擎为外部知识库获取实体特征信息,利用相似函数计算特征值,由D-S证据理论融合一组特征值,经阈值判断完成同义实体的识别。特征融合识别算法在医疗机构数据集上的识别精度、召回率和F值分别达到了85.80%、81.18%、83.43%,比单纯利用实体名的算法分别提高了4.09%、4.30%和4.21%。实验表明D-S证据理论将多特征融合,对同义实体识别具有更好的识别效果。
As the same entity has different expressions in the real world,this paper proposed a synonymous entity recognition method based on the D-S evidence theory for feature fusion.First the recognition method obtained the entity features from a search engine,an external knowledge base,and calculated feature values using a similarity function.Then it identified synonymous entities through a threshold value after fusing a group of features using the D-S theory.The recognition accuracy,recall and F value of using feature fusion on the medical institution dataset were 85.80%,81.18%and 83.43%,respectively,which were 4.09%,4.30%and 4.21%higher than the method simply using the entity name.Experiments show that the D-S evidence theory has better recognition effect on synonymous entities by multi-feature fusion.
作者
何晶晶
蔡德胜
介飞
吴共庆
He Jingjing;Cai Desheng;Jie Fei;Wu Gongqing(School of Computer&Information,Hefei University of Technology,Hefei 230009,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第5期1429-1433,共5页
Application Research of Computers
基金
国家"863"计划资助项目(2012AA011005)
国家自然科学基金资助项目(61273297)
关键词
D-S证据理论
特征融合
同义实体识别
搜索引擎
相似函数
D-S evidence theory
feature fusion
synonymous entity recognition
search engine
similarity function