期刊文献+

基于超像素分割的非局部均值去噪方法 被引量:7

Non-local mean denoising algorithm based on superpixel segmentation
下载PDF
导出
摘要 针对非局部均值(NLM)去噪算法在变化丰富的纹理区域采用平移窗口的方法选择相似块的不足进行了研究,提出一种基于超像素分割的非局部均值去噪算法。该方法充分考虑非局部均值去噪算法中相似性对噪声去除的影响,利用经过超像素分割处理得到的图像块内部相邻像素间以及纹理边缘都具有一定相似性的特点,在超像素分割块基础上优化纹理区域相似窗口的选择策略,提高图像块与中心像素块之间的相似性,从而达到提升非局部均值算法的去噪水平、边缘纹理不被模糊的目的。在多幅经典自然图像上的实验结果表明,该方法能够有效地去除图像中包含的噪声信息,相比于传统的非局部均值方法,保留了更多的纹理信息。 Focused on the deficiency that non-local mean(NLM)denoising algorithm was not adapted to the parallel selection of similar window in the texture region,this paper proposed a non-local mean denosing algorithm based on superpixel segmentation.This algorithm fully considered the influence of similarity in the respect of noise removal while using non-local mean algorithm,took advantage of characteristics of the similarity of neighboring pixels and boundary texture in the image block obtained by super-pixel segmentation.By optimizing the similar window selection strategy based on the super-pixel segmentation block and improving the similarity of the image blocks,so as to enhance the denoising level of the non-local mean algorithm and avoid blurring in the edges.Experimental results on a number of classical images show that the proposed algorithm can effectively remove the noise information contained in the image and retain more texture information compared with the traditional non-local mean method.
作者 杨洲 陈莉 贾建 Yang Zhou;Chen Li;Jia Jian(College of Information Science&Technology,Northwest University,Xi’an 710127,China;School of Mathematics,Northwest University,Xi’an 710127,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第5期1573-1577,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61379010) 西北大学研究生创新教育资助项目(YZZ14118)
关键词 超像素分割 相似窗选择 图像去噪 非局部均值 superpixel segmentation similar window selection image denoising non-local means
  • 相关文献

参考文献4

二级参考文献24

  • 1王朔中,路兴,苏胜君,张新鹏.Image block feature vectors based on a singular-value information metric and color-texture description[J].Journal of Shanghai University(English Edition),2007,11(3):205-209. 被引量:4
  • 2BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 3ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736- 3745.
  • 4ORCHARD J, EBRAHIMI M, WONG A. Efficient nonlocal-means denoising using the SVD[C]llProceedings of IEEE International Conference on Image Processing. San Diego, California: IEEE Signal Processing Society, 2008: 1732-1735.
  • 5TASDIZEN T. Principal components for nonlocal-means image denoising[C]llProceedings of IEEE International Conference on Image Processing. San Diego, California: IEEE Signal Processing Society, 2008: 1728-1731.
  • 6ZHANG L, DONG W, ZHANG D, et al. Two-stage image denoising by principal component analysis with local pixel grouping[J]. Pattern Recognition, 2010(43): 1531-1549.
  • 7VAN DE VILLE D, KOCHER M. Nonlocal means with dimensionality reduction and SURE-based parameter selection[J]. IEEE Transactions on Image Processing, 2011, 20(9): 2683-2690.
  • 8VAN DEVILLE D, KOCHER M. SURE-based nonlocal-means[J]. Signal Processing Letters, 2009, 16(11): 973-976.
  • 9SALMON J. On two parameters for denoising with nonlocal-means[J]. Signal Processing Letters, 2010, 17(3): 269-272.
  • 10FENG C S, MING L, WEI Z, et al. Edge preserving image denoising with a closed form solution[J]. Pattern Recognition, 2013, 46(3): 976-988.

共引文献61

同被引文献42

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部