期刊文献+

分布式多点采样短期电力负荷预测系统的设计

The Design of Electric System Short-Term Load Forecasting
下载PDF
导出
摘要 介绍了一种分布式多点采样短期电力负荷预测系统,包括电网电力线路和通讯信号线路;在通讯信号线路和电网电力线路的上游端设置有一个供电功率控制机构,在电网电力线路的下游端设置有若干个负载供电支线线路,每个负载供电支线线路和电网电力线路的连接处设置有一个分布式负载监测机构,若干个所述分布式负载监测机构均连接所述通讯信号线路的下游端;供电功率控制机构包括数据处理器和时间节点生成器,数据处理器和所述时间节点生成器均连接通讯信号线路的上游端,数据处理器连接时间节点生成器。确保不同位置处的采样数据在时间节点上的一致性,从而保障短期电力负荷预测分析结果的准确性。 This paper introduces a distributed multi-point sampling of short-term load forecasting system,including power lines and signal lines in communication;communication signal lines and power lines of the upstream end of the control mechanism is arranged in a power grid,power line downstream end is provided with a plurality of load power supply branch lines,connection each load power supply branch lines and power grid power line is provided with a distributed load monitoring mechanism,a plurality of the distributed load monitoring mechanism are connected to the signal line of the downstream end of the power supply;power control mechanism includes a data processor and a timing generator,data processor and the time node are connected with communication signal generator the upstream end of the line,the data processor is connected with timing generator.To ensure the consistency of the sampled data at different locations on the time node,so as to ensure the accuracy of the results of the short-term power load forecasting analysis.
作者 程晶晶 周明龙 CHENG Jing-jing;ZHOU Ming-long(Anhui Technical College of Mechanical and Electrical Engineering,Wuhu 241000,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2018年第2期216-218,共3页 Journal of Jiamusi University:Natural Science Edition
基金 2016年安徽省高校自然科学研究项目重点项目(KJ2016A141)
关键词 分布式 多点采样 短期电力负荷预测 distributed multipoint sampling short-term power load forecasting
  • 相关文献

参考文献3

二级参考文献38

  • 1刘建娟,徐晓苏,刘锡祥.遗传优化小波神经网络在组合导航系统中的应用[J].中国惯性技术学报,2006,14(2):33-37. 被引量:2
  • 2牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:120
  • 3HASSAN S, KHOSRAVI A, JAAFAR J. Improving load forecasting accuracy through combination of best forecasts [ C ]. IEEE International Conference on Power System Technology, Auckland, New Zealand :2012.
  • 4SINGH A K, IBRAHEEM I, KHATOON S, et al. Load forecasting techniques and methodologies :A review [ C ]. International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India :2012.
  • 5YING CHEN, LUH P B, CHE GUAN, et al. Short-Term load forecasting: Similar day-based wavelet neural networks [ J ]. IEEE Transactions on Power Systems ,2010,25 ( 1 ) :322 - 330.
  • 6STOCKMAN M, EIRAMLI R S, AWAD M, et al. An asymmetrical and quadratic support vector regression loss function for beirut short term load forecast [ C ]. IEEE International Conference on Systems, Man and Cybernetics ( SMC ), Seoul, Korea : 2012.
  • 7HAQUE A U, MANDAL P, MENG J, et al. A novel hybrid approach based on wavelet transform and fuzzy ARTMAP network for predicting wind farm power production [ C ]. IEEE Industry Applications Society Annual Meeting( IAS), Las Vegas, NV, USA :2012.
  • 8GHELARDONI L, GHIO A, ANGUITA D. Energy load forecasting using empirical mode decomposition and Support Vector Regression [ J ]. IEEE Transactions on Smart Grid,2013,4( 1 ) :549 -556.
  • 9MORI H, KURATA E. An efficient kernel machine technique for short- term load forecasting under smart grid environment [ C 1. IEEE on Power and Energy Society General Meeting, San Diego, CA, USA :2012.
  • 10TASRE M B, GHATE V N, BEDEKAR P P. Hourly load forecasting using artificial neural network for a small area [ C ]. International Conference on Engineering, Science and Management (ICAESM), Nagapattinam, Tamil Nadu, India :2012.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部