期刊文献+

InAs/GaAs量子点生长的KMC模拟

KMC simulation for growth of InAs/GaAs quantum dots
下载PDF
导出
摘要 采用动力学蒙特卡罗(kinetic Monte Carlo,KMC)模型模拟了Ga As应变弛豫图形衬底上In As量子点生长的初始阶段.Ga As应变弛豫图形衬底是通过在其衬底中埋藏已制备的In As量子点得到,并运用格林函数法计算在不同的埋藏深度下衬底表面的应变能,然后将计算结果运用到生长模拟过程中.模拟中分别考虑了温度、沉积速率和埋层深度对量子点生长的影响.模拟结果表明:通过控制生长温度和沉积速率能形成均匀、有序分布的2D岛;埋层深度越大,越不利于沉积原子聚集. The kinetic Monte Carlo(KMC)model is used to simulate the initial phase of the growth of InAs quantum dots on GaAs strain relaxation substrate.The strain relaxation of GaAs substrate can be obtained by burying InAs quantum dot in the substrate.The Green’s function method is used to calculate strain energy distributed in the substrate surface under different burial depths.The calculation results are applied to the growth process,in which the effects of temperature,deposition rate and buried depth on the growth are considered.Simulation results show that,by controlling the growth temperature and deposition rate,uniform and orderly distribution of 2D islands can be obtained.In addition,the greater the depth of burial,the more unfavorable to the atomic aggregation.
作者 陈龙 徐凯宇 CHEN Long;XU Kaiyu(Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China;College of Sciences,Shanghai University,Shanghai 200444,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期367-377,共11页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11072138) 上海市自然科学基金资助项目(15ZR1426100)
关键词 量子点 蒙特卡罗模拟 生长温度 沉积速率 应变能 quantum dot kinetic Monte Carlo(KMC)simulation growth temperature deposition rate strain energy
  • 相关文献

参考文献9

二级参考文献77

  • 1邵淑英,范正修,范瑞瑛,邵建达.薄膜应力研究[J].激光与光电子学进展,2005,42(1):22-27. 被引量:41
  • 2李庚伟,吴正龙,邵素珍,张建辉,刘志凯.氧离子束辅助激光淀积生长ZnO/Si的研究[J].材料导报,2005,19(2):109-111. 被引量:5
  • 3荻野俊郎 本间芳和.半导体表面的原子结构设计〔日文〕[J].日本物理学会志,2001,56:83-90.
  • 4[1]Xie Q, Madhukar A, Chen P, et al. Vertically self-organized InAs quantum box islands on GaAs (100) [J]. Phys. Rev. Lett., 1995, 75: 2542.
  • 5[2]Solomon G, Trezza J, Marshall A, et al. Vertically aligned and electronically coupled growth induced InAs islands in GaAs [J]. Phys. Rev. Lett., 1996, 76: 952.
  • 6[3]Koike K, Li S, Yano M. Molecular beam epitaxial growth and characterization of the vertically aligned InAs quantum dots embedded in Al0.5Ga0.5As [J]. Jpn. J. Appl. Phys., 2000, 39: 1622.
  • 7[4]Koike K, Saitoh K, Li S, et al. Room-temperature operation of a memory-effect AlGaAs/GaAs heterojunction field-effect transistor with self-assembled InAs nanodots [J]. Appl.Phys.Lett., 2000, 76: 1464.
  • 8[5]Edeiros-Ribeiro G, Leonard D, Petroff P. Electron and hole energy level in InAs self-assembled quantum dots [J]. Appl.Phys.Lett., 1995, 66: 1767.
  • 9Lee Y K,Han S W,Lee SS,et al.The Growth of β-LiGaO2 Films Using Novel Single Precursors.Journal of Crystal Growth,2001(226):481-487.
  • 10Lee J J,Park Y S,Yang CS,et al.MBE Growth of Wurtzite GaN on LaAlO3(100) Substrate.Journal of Crystal Growth,2000(213):33-39.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部