期刊文献+

基于主成分分析和极限学习机的公路货运量预测研究 被引量:3

Research on Highway Freight Volume Forecasting Based on Principal Component Analysis and Extreme Learning Machine
下载PDF
导出
摘要 提出了一种基于主成分分析和极限学习机的计算方法,并用这种方法对货物运输量进行预测。该方法首先利用主成分分析的方法融合多个影响货运量的因素,获取主成分;然后建立极限学习机模型来预测公路货运量;最后计算模型性能指标并与相关模型进行对比。结果表明,基于主成分分析和极限学习机的货物运输量预测方法具有较高的稳定性和预测精度。 This article proposes a predictive model based on PCA and ELM,and try to use it to forecast freight volume.This method firstly fuses multiple influence factors influen-cing freight volume by using the method of principal component analysis and obtains the principal components;Then Extreme learning machine model is established to forecasting the highway freight volume;Finally,it calculates the performance of the model and compares with the relevant model.It turned out that,this freight volume forecasting method based on PCA and ELM is better than single ELM model or BP neural network model in prediction stability and precision.
作者 谢超 XIE Chao(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《交通与运输》 2018年第A01期64-67,共4页 Traffic & Transportation
关键词 货运量预测 主成分分析 极限学习机 Freight volume forecasting Principal component analysis Extreme learning machine
  • 相关文献

参考文献4

二级参考文献37

  • 1匡敏,胡思继,邢培昱,武旭.基于国民经济大系统下的铁路货物运输量预测方法的研究[J].北京交通大学学报(社会科学版),2003,2(4):21-24. 被引量:14
  • 2林晓言,陈有孝.基于灰色-马尔可夫链改进方法的铁路货运量预测研究[J].铁道学报,2005,27(3):15-19. 被引量:58
  • 3HUANG G B, ZHU Q Y, SlEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004:25 - 29.
  • 4ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(2): 1759- 1763.
  • 5TAMURA S, TATEISHI M. Capabilities of a four-layered feedforward neural network: four layers versus three[J]. IEEE Transactions on NeuralNetworks, 1997, 8(2): 251 - 255.
  • 6HUANG G B. Learning capability and storage capacity of two-hidden-layer feedforward network[J]. IEEE Transactions on Neural Networks, 2003, 14(2): 274 - 281.
  • 7SERRE D. Matrices: Theory and Applications[M]. New York: Springer, 2002.
  • 8LIANG N Y, HUANG G B. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411 - 1423.
  • 9HUI C, MATS N, SIRKKA L. Evaluation of PCA methods with improved fault isolation capabilities on a paper machine simulator[J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92(3): 186 - 199.
  • 10PENG D Z, ZHANG Y. Dynamics of generalized PCA and MCA learning algorithms[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1777- 1784.

共引文献82

同被引文献23

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部